CHINA

THE STATE OF THE WORLD'S FOREST GENETIC RESOURCES COUNTRY REPORT

This country report is prepared as a contribution to the FAO publication, The Report on the State of the World's Forest Genetic Resources. The content and the structure are in accordance with the recommendations and guidelines given by FAO in the document Guidelines for Preparation of Country Reports for the State of the World's Forest Genetic Resources (2010). These guidelines set out recommendations for the objective, scope and structure of the country reports. Countries were requested to consider the current state of knowledge of forest genetic diversity, including:

- Between and within species diversity
- List of priority species; their roles and values and importance
- List of threatened/endangered species
- Threats, opportunities and challenges for the conservation, use and development of forest genetic resources

These reports were submitted to FAO as official government documents. The report is presented on www. fao.org/documents as supportive and contextual information to be used in conjunction with other documentation on world forest genetic resources.

The content and the views expressed in this report are the responsibility of the entity submitting the report to FAO. FAO may not be held responsible for the use which may be made of the information contained in this report.

The State of China's Forest Genetic Resources

Main Report

Beijing China March 2012

Table of contents

ACKNOWLEDGEMENTS	I
NATIONAL COMMITTEE	II
EXPERT COMMITTEE	IV
TECHNICAL WORKING GROUP	V
NOTES ON TABLES	VI
ABBREVIATIONS AND ACRONYMS	VII
EXECUTIVE SUMMARY	IX
The state of genetic diversity	IX
THE STATE OF <i>IN SITU</i> CONSERVATION	IX
THE STATE OF <i>EX SITU</i> CONSERVATION	IX
THE STATE OF UTILIZATION AND SUSTAINABLE MANAGEMENT	X
THE STATE OF NATIONAL PLANS, RESEARCH, EDUCATION, TRAINING AND LEGISLATION	X
THE STATE OF REGIONAL AND INTERNATIONAL COOPERATION	XI
THE STATE OF ACCESS AND BENEFIT-SHARING (ABS) OF FGR	XI
CONTRIBUTIONS TO FOOD SECURITY, POVERTY ALLEVIATION AND SUSTAINABLE DEVELOPMENT	XI
BACKGROUND	1
1. NATURAL CONDITIONS	1
2. Forest Resources	1
3. TIMBER PRODUCTION AND FOREST PRODUCTS TRADE	3
4. Forestry Genetic Resources	4
CHAPTER 1 THE STATE OF DIVERSITY	5
1.1 Species diversity	6
1.1.1 Species Diversity of Timber Trees	6
1.1.2 Species Diversity of Economic Trees	7
1.1.3 Species Diversity of Protection Trees	8
1.1.4 Species Diversity of Gardening Ornamental Trees	8
1.1.5 Species Diversity of Energy Trees	9
1.2 INTRA-SPECIES DIVERSITY	10
1.2.1 Evaluation techniques	10
1.2.2 Geographic variation of provenances	11
1.2.3 Genetic diversity	13
1.3 VALUES OF FGR	15
1.3.1 Main values of diversity	15
1.3.2 Priority for conservation	15
1.4 THE STATE OF CONSERVATION	16
1.5 INFLUENCING FACTORS	18
1.6 MAJOR PROBLEMS, NEEDS AND PRIORITIES FOR FUTURE WORK	19

1.6.1 Majo	or problems and needs	19
1.6.2 Prior	rities for future work	20
CHAPTER 2	THE STATE OF IN SITU CONSERVATION	21
2.1 TYPES OF	IN SITU CONSERVATION	21
2.2 System o	DF IN SITU CONSERVATION	22
2.2.1 Natu	re reserve	
2.2.2 Fore	st park	24
2.2.3 Scen	ery park	25
2.2.4 In sit	u conservation forest	25
2.2.5 Ancie	ent and rare trees	
2.3 TECHNIQU	JES FOR IN SITU CONSERVATION	
2.3.1 Settir	ng of in situ conservation forest	27
2.3.2 Mont	itoring and evaluation and maintenance of in situ conservation	27
2.3.3 Utiliz	zation of conserved resources	
2.4 INFORMA	ΓΙΟΝ SYSTEMS	
2.5 MAIN PRO	BLEMS, NEEDS AND FUTURE PRIORITIES	29
2.5.1 Main	problems and needs	29
2.5.2 Futu	re priorities	29
CHAPTER 3	THE STATE OF FGR EX SITU CONSERVATION	30
3.1 TYPES OF	EX SITU CONSERVATION	
3.1.1 Ex si	tu conservation bank	
3.1.2 Facil	lity storage conservation	
3.2 The syst	EM OF <i>EX SITU</i> CONSERVATION	
3.2.1 Mult	i-species collections	
3.2.2 Singl	e-species collections	
3.2.3 Loca	l (regional) collections	
3.2.4 Disp	lay collections	
3.2.5 Low-	temperature storage facility	
3.3 TECHNIQU	JES OF EX SITU CONSERVATION	
3.3.1 Prior	rity setting for ex situ conservation	
3.3.2 Mode	els of ex situ conservation	
3.3.3 Samp	oling strategies on ex situ conservation	
3.3.4 Utiliz	zation of conserved FGR	
3.4 Collect	ION AND CONSERVATION APPROACHES	39
3.5 DOCUMEN	NTATION AND INFORMATION SYSTEM	40
3.6 Major pr	OBLEMS, NEEDS AND PRIORITIES FOR FUTURE WORK	41
3.6.1 Majo	or problems and needs	41
3.6.2 Prior	rities for future work	41
CHAPTER 4	THE STATE OF UTILIZATION AND SUSTAINABLE MANA	GEMENT OF
FGR		43
4.1 MANAGEI	MENT AND UTILIZATION OF CONSERVED FGR	43
4.1.1 Utiliz	zation	

4.1.2 Restraining factors	
4.2 BREEDING AND GENETIC IMPROVEMENT	46
4.2.1 Breeding techniques	
4.2.2 Seed orchard development	
4.3 UTILIZATION, MANAGEMENT AND TRADE OF PROPAGATION MATERIAL	48
4.3.1 Management and extension of improved trees	
4.3.2 International trade of propagation materials	
4.3.3 Commercial applications of genetically improved trees	
4.4 MAJOR PROBLEMS, NEEDS AND PRIORITIES FOR FUTURE WORK	50
4.4.1 Major problems and needs	
4.4.2 Priorities for future development	

CHAPTER 5 THE STATE OF NATIONAL PLAN, RESEARCH, EDUCATION, TRAINING

AND LEGISLATION	52
5.1 NATION PLANS AND PROGRAMS	
5.2 Research	53
5.3 EDUCATION AND TRAINING	54
5.4 LAWS AND REGULATIONS	54
5.5 Administration	55
5.6 PUBLIC AWARENESS AND INFORMATION DISSEMINATION	56
5.7 THE MAIN PROBLEMS, NEEDS AND FUTURE PRIORITIES	56
5.7.1 The main problems and needs	56
5.7.2 Priorities for future work	57
CHAPTER 6 THE STATE OF REGIONAL AND INTERNATIONAL COOPER	ATION58
6.1 INTERNATIONAL INSTITUTIONS AND NETWORKS	58
6.2 INTERNATIONAL COOPERATION PROJECTS	
6.3 INTERNATIONAL CONVENTION / AGREEMENT	
6.4 MAJOR NEEDS AND FUTURE PRIORITIES	63
CHAPTER 7 THE STATE OF ABS	65
7.1 FRAMEWORKS OF LAW AND POLICY	65
7.1.1 International conventions	65
7.1.2 Domestic legislation and policies	66
7.2 Stakeholders	67
7.3 THE STATE OF ACCESS TO GENETIC RESOURCES	68
7.3.1 Access to genetic resources across countries	68
7.3.2 Access to domestic genetic resources	69
7.4 THE STATE OF BENEFIT SHARING	70
7.5 MAJOR PROBLEMS, NEEDS AND PRIORITIES FOR FUTURE WORK	71

CHAPTER 8 CONTRIBUTIONS TO FOOD SECURITY, POVERTY ALLEVIATION AND

SUSTAINABLE DEVELOPMENT	72
8.1 Contributions to food security	72
8.1.1 Woody species for food	72

8.1.2 Woody species for edible oil	73
8.1.3 Fruit tree species	73
8.1.4 Woody vegetable species	74
8.2 CONTRIBUTIONS TO POVERTY ALLEVIATION	74
8.2.1 Managing FGR to promote restructuring of rural production system	74
8.2.2 FGR utilization for poverty alleviation and income generation in rural areas	75
8.3 CONTRIBUTIONS TO SUSTAINABLE DEVELOPMENT	76
8.4 CONTRIBUTIONS TO REALIZING THE "MILLENNIUM GOALS"	78
8.5 MAJOR PROBLEMS, NEEDS AND PRIORITIES FOR FUTURE WORK	79
8.5.1 Major problems and needs	79
8.5.2 Priorities for future work	79

Acknowledgements

We would like to express our sincere thanks for the support provided by the Department of Tree Planting and Afforestation, the Department of Forest Resources Management, the Department of Wildlife Protection and Nature Reserve Management, the Department of Policies, Laws and Regulations, the Department of Development Planning and Fund Management, the Department of Science and Technology, the Department of International Cooperation, the Administration of State-owned Forest Farms and Forest Seeds and Seedlings, the Office of Imports and Exports Management of Endangered Species, the Office of Desertification Combating, the Science and Technology Development Center, the Wetland Management Center, the CAF. Warn thanks are given to Yin Weilun, Jiang Youxu, Sheng Weitong, Zhang Shougong, Shen Xihuan, Yang Chuanping, Shi Jisen, Zhang Qixiang, Wang Huoran, Zhang Jianguo, Xu Jiuru, Lin Jinxing, Duan Anan, Li Zhouqi, Su Xiaohua, and Sun Xiaomei for their valuable guidance to the drafting of the report. We also thank Peng Nanxuan for his proof reading of the Chinese version of the report.

National Committee

Chair:

Sun Zhagen	Vice Minister	SFA

Vice Chair:

Hu Zhangcui	Director General	Science and Technology Development Center	SFA
Zhang Hongyan	Deputy Director	Department of International Cooperation	SFA
	General		

Senior Member:

Wu Jian	Chief Engineer	Department of Tree Planting and Afforestation	SFA
Xu Jide	Deputy Director	Department of Forest Resources Management	SFA
	General		
Yan Xun	Chief Engineer	Department of Wildlife Protection and Nature	SFA
		Reserve Management	
Lu Cangqiang	Deputy Director	Department of Policies, Laws and Regulations	SFA
	General		
Gao Yuying	Deputy Director	Department of Development Planning and Fund	SFA
	General	Management	
Li Xing	Deputy Director	Department of Science and Technology	SFA
	General		
Zhang Jianmin	Chief Engineer	Administration of State-owned Forest Farms and	SFA
		Forest Seeds and Seedlings	
Zhou Yafei	Deputy Director	Management Office of Imports and Exports of	SFA
		Endangered Species	
Luo Bin	Deputy Director	Office of Desertification Combating	SFA
Huang Faqiang	Deputy Director	Science and Technology Development Center	SFA
	General		
Yan Chenggao	Deputy Director	Office of Wetland Convention Enforcement	SFA
Chu Fuxiang	Vice President	CAF	

Zhang Zhongtian	Division Director	Department of International Cooperation	SFA
Zhang Min	Deputy Division	Department of Forest Resources	SFA
	Director	Management	
Zhang Dehui	Deputy Division	Department of Wildlife Protection and	SFA
	Director	Nature Reserve Management	
Wang Chunling	Deputy Division	Department of Wildlife Protection and	SFA
	Director	Nature Reserve Management	
Yang Fengwei	Division Director	Department of Science and Technology	SFA
Lu Xinzheng	Division Director	Administration of State Owned Forest	SFA
		Farms and Forest Seeds and Seedlings	
Wang Qi	Division Director	Science and Technology Development	SFA
		Center	
Li Qiling	Deputy Division	Science and Technology Development	SFA
	Director	Center	
Yin Cangjun	Deputy Division Director	Division of Research Management	CAF

Junior member:

Expert Committee

Chair:

Yin Weilun	Professor	BJFU
------------	-----------	------

Member:

Jiang Youxu	Research Professor	CAF
Li Wenhua	Research Professor	CAS
Liu Xu	Research Professor	CAAS
Zhang Shougong	Research Professor	CAF
Yang Chuanping	Professor	NEFU
Shi Jisen	Professor	NJFU
Zhang Qixiang	Professor	BJFU
Shen Xihuan	Professor	BJFU
Li Zhouqi	Professor	NEAFSTU
Fan Junfeng	Professor	NEAFSTU
Duan Anan	Professor	SWFU
Zhang Jianguo	Research Professor	CAF
Fu Feng	Research Professor	CAF
Fan Shaohui	Research Professor	CIBR

Technical Working Group

Team Leader:

Chu Fuxiang	Vice President	Chinese Academy of Forestry
-------------	----------------	-----------------------------

Deputy Team Leader:

Wang Qi	Division Director	Science and Technology Development Center	SFA
Zheng Yongqi	Director	Division of Forest Genetic Resources	CAF

Member:

Li Bin	Institute of Forestry	CAF
Li Wenying	Institute of New Technologies	CAF
Lin Furong	Institute of Forestry	CAF
Zong Yichen	Institute of Forestry	CAF
Yu Xuedan	Institute of Forestry	CAF
Zhang Chuanhong	Institute of Forestry	CAF
Cheng Beibei	Institute of Forestry	CAF
Jia Zhiqing	Institute of Desertification	CAF
Li Diqiang	Institute of Forest Ecology and Protection	CAF
Guo Qirong	International Bamboo and Rattan Center	SFA
Li Wei	Institute of Forestry	CAF
Zhao Han	Institute of Forestry	CAF
Huang Ping	Institute of Forestry	CAF

Notes on tables

The tables given in the FAO guidelines to the preparation of the FGR country report were attached at the end of the main report as appendix tables. Those not given in the FAO guidelines were placed at appropriate locations in the text.

Abbreviations and Acronyms

ABS	Access and benefit sharing for genetic resources
ACIAR	Australia Center for International Agricultural Researches
APAFRI	Asia and Pacific Association of Forestry Research Institutions
APFORGEN	Asia and Pacific Forest Genetic Resources Program
BI	Bioversity International
BJFU	Beijing Forestry University
CAF	Chinese Academy of Forestry
CAAS	Chinese Academy of Agricultural Sciences
CAS	Chinese Academy of Sciences
CBD	Convention on Biological Diversity
CETDR	Center for Eco-tourism Development and Research
CEPF	China Environmental Protection Foundation
CI	Conservation International
CIB	Chengdu Institute of Biology
CIBR	Center for International Bamboo and Rattan
CICEPG	Center for International Cooperation on Environment Protection of Guizhou
CIFOR	Center for International Agricultural Research
CIIW	Convention on International Important Wetland, Especially as Waterfowl
	Habitat
CITES	Convention on International Trade in Endangered Species of Wild Fauna and
	Flora
EAPVPF	East Asia Plant Variety Protection Forum
EIB	European Investment Bank
FAO	Food and Agriculture Organization
GEF	Global Environment Facility
HNU	Hainan Normal University
HPBF	Hubei Provincial Bureau of Forestry
INBAR	International Network of Bamboo and Rattan
ISA	International Sarch Association
ITTO	International Topical Timber Organization
IUCN	International Union for Conservation of Nature
IUFRO	International Union of Forestry Research Organizations
JICA	Japan International Cooperation Agency
JPBF	Jiangxi Provincial Bureau of Forestry
NFGRP	National Forest Genetic Resources Platform
NEFU	Northeast Forestry University
NJFU	Nanjing Forestry University
NNRTCG	National Nature Reserve of Tree-fern in Chishui of Guizhou
NEAFSTU	Northwest Agriculture and Forestry Science and Technology University
SAUD	Sichuan Agricultural University- Dujiangyan Campus

SFA	State Forestry Administration
SPAF	Sichuan Provincial Academy of Forestry
SPBF	Sichuan Provincial Bureau of Forestry
STNNR	Shan'xi Taibai National Nature Reserve
SUT	Shenyang University of Technology
SWFU	Southwest Forestry University
TEAKNET	Teak Net
TNC	The Nature Conservancy
UNCCD	UN Convention on Combating Desertification
UNDP	UN Development Program
UNFCCC	UN Framework Convention on Climate Change
UNFF	UN Forest Forum
UPOV	International Union for the Protection of New Varieties of Plants
WBG	Wuhan Botanical Garden
WWF	World Wildlife Fund
WI	Wetland International
YPAF	Yunnan Provincial Academy of Forestry

Executive summary

The state of genetic diversity

There are many forest types in China with a wide range of species and rich forest genetic resources (FGR). China has more than 8,000 species of woody plants, of which about 2,000 species are arbor trees, accounting for 54% and 24% of the world's total respectively. Among the woody plants, about 1,000 species are economically important, mainly for timber production, fruit production, ecological protection, gardening and energy production. The large number of tree species and their Inter-species genetic diversity has laid a solid foundation for development of forest resources, forestry ecological construction and forestry industrial development. In recent years, with the implementation of the national key forestry ecological construction programs, China has made significant progress in forest biodiversity conservation, but due to the rapid social and economic development, protecting natural forests are still facing great pressure, genetic erosion in many species is serious, and some even threatened with extinction. Therefore, there is an urgent need to protect threatened species and their genetic resources, to establish a cooperative network of national FGR, to carry out monitoring and evaluation of species with important and potential economic values.

The state of in situ conservation

China has made significant progress in *in-situ* FGR conservation. Up to 2010, there were 2,588 national nature reserves with a total area of 149 million ha, accounting for about 14.9% of China's total land area. 2,035 out of the 2,588 national nature reserves are managed by forestry sector, covering an area of 123.3 million ha and accounting for 12.3% of China's total land area. About 90% of all the natural terrestrial ecosystems, 85% of wildlife animal populations with protection priority, and 65% of community types of higher plants have been well protected. A total of 2,583 forest parks with a total area of 16.78 million ha were established; and a total number of 885 national and provincial-level scenery parks have been established, with a total area of 18.14 million ha; 2.853 million ancient and rare trees have been identified and most of them have been labeled for protection. A total number of 51 *in situ* conservation forests have been established. Future needs were identified to be improvement of the quality of *in situ* conservation, harmonization of protection and economic development, enforcement of dynamic monitoring and evaluation of the *in situ* conservation of FGR.

The state of *ex situ* conservation

China has established a nation-wide network of *ex situ* FGR conservation, including 22 locations of multiple species conservation, 13 locations of single species conservation, 131 locations of

conservation of regional key species and more than 160 arboreta. A total of 420.6 ha of conservation stands have been established, conserving more than 2,000 species including more than 120 priority species. *Cunninghamia lanceolata, Pinus tabulaeformis, Pinus massoniana, Pinus sylvestris* var. *mongolica, Larix olgensis, Larix kaempferi* and *Betula alnoides* have more than 1,000 accessions have been conserved. A total area of 409,100 ha of seed orchards, seed stands and cutting orchards has been established throughout the country. These seed production bases have become important *ex situ* conservation forests. In comparison, low-temperature storage for FGR in China is relatively lagged behind, and construction of storage facilities has not been given sufficient attention. The main restraining factors for *ex situ* FGR conservation are insufficient baseline information on quantity of resources, poor research support and shortage of funding etc., therefore, it is an urgent need to increase the investment to speed up the construction of conservation banks, and to strengthen information development, in order to continually improve conservation, management, research, use and sharing of FGR.

The state of utilization and sustainable management

Genetic improvement programs have been carried out for more than 100 forest tree species in China. China produces an average of 23 million kg seeds of various tree species and about 30 billion qualified young plant stocks. Significant gains have been achieved due to the use of genetically improved plant materials in plantations, achieving an average growth gain of 10-30% for timber trees and an average yield gain of 15-68% for fruit trees. China imports more than 150,000 kg tree seeds annually, involving more than 50 species; and exports 300,000 kg tree seeds and plant stocks of over 400 species annually. In the past 10 years, China has made significant progress in sustainable management and utilization of FGR, future priority should be given to the maintenance and capital subsidy to the conserved FGR, strengthening supervision of seed market and information services, and further enhancing the supply and use of genetically improved seeds.

The state of national plans, research, education, training and legislation

China has formulated a series of national plans for conservation and management of FGR, and the conservation and management of FGR have been continually strengthened. The SFA is the competent authority of FGR in China. The laws and regulations related to FGR in China have been revised to meet new requirements; Inventory, collection, conservation and utilization of FGR have been carried out; a number of disciplines related to FGR have been set up in the high education in forestry. With extensive dissemination and education activities, public awareness of FGR has been gradually improved. However, the lack of sustained and stable funding to support FGR studies and the need for strengthened capacity building impose urgent demands for increased capital investment to further strengthen the education and training on FGR, to strengthen the research and discipline development of FGR, and to improve and enrich the theoretical and technical systems.

The state of regional and international cooperation

China has established cooperative relations with more than 40 countries and joined more than 20 international networks relevant to FGR. Cooperation activities carried out include information exchange, database development, development of conservation strategies, and seed exchanges etc. China has acceded to international conventions such as CBD, CITES, UNFCCC, UNCCD, UNFF and UPOV Convention and more than 10 multilateral or bilateral agreements, therefore promoting the conservation and utilization of FGR.

The state of access and benefit-sharing (ABS) of FGR

Fair and equitable sharing the benefits generated by the use of genetic resources, is one of the three objectives of the CBD, it contributes to biodiversity conservation and its sustainable use, helps poverty alleviation and promotes sustainable development. China is formulating and revising relevant laws and regulations, aiming to promote the ABS of FGR which supports science-based conservation and utilization of FGR, promote technology innovation in tree breeding and bio-industry development, and to promote sustainable forestry development. China should actively participate in the negotiation and implementation of relevant international conventions, improve relevant laws, regulations and policies as soon as possible, establish an effective ABS mechanism.

Contributions to food security, poverty alleviation and sustainable development

In 2010, China achieved a gross product of RMB 2,277.902 billion in forestry, and the promotion and application of genetically improved species have played an important role in increasing the gross product. Exploitation and utilization of FGR have made important contributions to sustainable socio-economic development, food security and achievement of the Millennium Development Goals. Uses of the multiple values of FGR have resulted in increase of farmer's income, poverty reduction, increase of employment opportunities, increase of schooling rate of children and social status of women. China has more than 100 species of cultivated woody plants for fruits and oil production, for instance, the typical tea-oil tree (*Camellia oleifera*) has been planted in large-scale. In the future, priority will be given to: genetic improvement and increase of variety diversity of various economic species such as woody plants for fruits and oil production, and for production of edible vegetables; market development for plant stocks and rational use of improved trees; development of anti-poverty preferential policies that give priority to supply genetic resources of improved trees and shrubs, and related processing and utilization technologies to poverty-strike and ecologically fragile areas.

Background

1. Natural Conditions

China is located in the eastern part of Asia, west coast of the Pacific Ocean, between longitudes of 73° and 135° east, latitude 4° to 53° north, with a land area of 9.60 million km². China has 23 provinces, 5 autonomous regions, 4 centrally-controlled municipalities and 2 special administrative regions. China has complex and diverse landforms, high in the west and low in the east, with the lowest altitude of -155 m and the highest altitude of 8,843 m. Mountainous area accounts for 2/3 of the total land area. The climate is also complex and diverse, including five climate zones: tropical, subtropical, warm temperate, temperate, mid-temperate and cold-temperate zones. Based on the characteristics of geology, geomorphology, hydrology, soil, animals and plants, China can be divided into three major natural geographic regions: the Eastern Monsoon Region, the Northwestern Arid Region and the Qinghai-Tibet Alpine Region. The complex and diverse topography and climate have resulted in rich forest genetic resources. China is the most populous country in the world, its population accounts for about 1/5 of the world's total population. China's population increased by 5.84% in 2010 compared to 2000.

2. Forest Resources

Up to 2010, China has a forest area of 195.4522 million ha, with average forest coverage of 20.36%, and a larger proportion (67.25%) of middle- and young-aged forests. The total volume of standing trees was 14.913 billion m³, and the forest stock volume was 13.721 billion m³. Forest resources are mainly distributed in Daxin'an Mountains, Xiaoxin'an Mountains and Changbai Mountains in northeastern China; Sichuan, Yunnan, and southeastern Tibet in southwestern China; low mountains and hilly areas in eastern and southern China; and Qinling Mountains, Tianshan Mountains, Altai Mountains, Qilian Mountains and southeastern Qinghai in northwestern China. While in the vast territory of northwestern China, the central and western Inner Mongolia, most part of Tibet, and the densely populated and economically well-developed regions such as the northern China, the Central Plains and the middle and lower reaches of Yangtze River and

Yellow River, distributed less forest resources. China has 181.3809 million ha of forest land area, of which 119.6925 million ha were natural forests, accounting for 65.99% of the total forested land; the volume of natural forests was 11.402 billion m³, accounting for 85.33% of the total volume of forest stocks. Plantation area was 61.6884 million ha (Appendix Table 1), accounting for 34.01% of the total forested land; the total volume of plantations was 1.961 billion m³, accounting for 14.67% of the total forest stock volume. According to the forest types, ecological and public welfare forests and commercial forests accounted for 52.41% and 47.59% respectively of the total forest area. Among the ecological and public welfare forests, 83.0838 million ha were protective forests and 11.9782 ha were special purpose forests. Among the commercial forests, 64.1616 ha were timber forests, 1.7473 ha were firewood forests and 20.41 million ha were economic forests. According to the land ownerships, 72.4677 million ha were state-owned forest lands and 108.9132 million ha were collectively-owned forest lands, respectively accounting for 39.95% and 60.05% of the total forest land area. According to the forest ownerships, 71.4358 million ha were state-owned forests, 51.7699 million ha were collectively-owned forests, and 58.1752 million ha were individually-owned forests (Appendix table 2), respectively accounting for 39.38%, and 28.54% and 32.08% of the total forest area.

China has developed a basic system of forest resource management consisting of administrative management as the mainstay and resource monitoring and supervision as the supplements. China has preliminarily created an integrative set of management systems featured with Chinese characteristics, including governance of forest utilization, protection of forest lands, and monitoring of dynamics of forest resources. The system of forestry laws and regulations has been largely improved, leading to a better legal system concerning forest resource management. Since the SFA, as the forestry authority of the State Council, stationed forest resource supervision institutions in key forestry provinces (autonomous regions and municipalities) in 1989, a national framework of forest resources supervision at provincial level, and making the supervisions more effective. Increasing enhancement of forest resource management provided an important guarantee for achieving sustainable development of forest resources and harmonious coexistence of human and nature.

In recent 10 years, the area and volume of forests continually grow, with a steady increase of forest coverage; the sustainable forest management and resources protection are gradually strengthened, with a significant increase in area and volume of natural forests; the rapid increase

in area and volume of plantations indicated an increasing trend in the forest resources as the reserve; the volume growth of forests increased significantly, harvesting is gradually shifted to plantations; forest quality is improved and the ecological functions of forests are continually enhanced; the proportion of individually-managed forest area increased significantly and reform of the collective forest ownership has achieved remarkable impacts.

3. Timber Production and Forest Products Trade

In 2010, the total timber production in China was 80.8962 million m³, of which 75.1321 million m³ were logs and 5.7641 million m³ were firewood. Timber production was 13.8599 million m³ by state-owned enterprises and 12.933 million m³ by state-owned forest farms and corporate institutions within forestry sector. Timber production was 2.6602 million m³ from self-managed forests by enterprises and corporate institutions outside forestry sector, 4.2369 million m³ by township (town) collective enterprises, and 47.2062 million m³ by various organizations at village level and below as well as individual farmers.

The export of forest products in 2010 was \$46.317 billion accounting for 2.94% of the total value of commodity exports, and the import was \$45.707 billion accounting for 3.41% of the total value of commodity imports. The export of timber forest products was \$34.654 billion accounting for 74.82% of the total export of forest products, and the import of timber forest products was \$29.321 billion accounting for 64.15% of the total import of forest products. The export of non-timber forest products was \$11.662 billion, accounting for 25.18% of the total export of forest products, and the import of forest products, and the import of forest products. The export of non-timber forest products was \$17.032 billion accounting for 35.85% of the total import of forest products.

In 2010, among the imports and exports of timber forest products, those of logs were respectively 28,400 m³ and 34.3475 million m³; those of saw logs (excluding the special-shaped timber) were respectively 539,400 m³ and 14.8122 million m³; the exports of plywood, fiberboard and particleboard were respectively 7.5469 million m³, 2.5695 million m³ and 165,500 m³; the imports of them were respectively 213,700 m³, 400,000 m³ and 539,400 m³; the export of wooden furniture was 298,327 million pieces (\$16,157 billion), and the import was 4.3614 million pieces (\$388 million); the import of wood pulp was 11,299.952 million kg; the export of paper and paper products (calculated on equivalent wood pulp) was 5,157.993 million kg, while the import was

3,536.533 million kg; the export of waste paper was 621,000 kg, and the import was 24,352.214 million kg.

With rapid social and economic development and the improvement of living standards, the demand for forest products is very strong, but the supply is insufficient, and the import and export of forest products was increasing. However, the import and export of non-wood forest products appeared to decline.

4. Forestry Genetic Resources

China has more than 8,000 species of woody plants, 7 endemic families, 239 endemic genera and about 1,100 endemic species. The majority of tree species have large Intra-species variation and rich genetic diversity, providing basic conditions for genetic improvement and playing an important role in developing new varieties and diverse products, especially in improving production, quality and resistance. The rich FGR also made important contributions to the supply of ecosystem services, adaptation to climate change and poverty alleviation, as well as economic and social development.

Chapter 1 The State of Diversity

China's vast territory, complex terrain and diverse climate have resulted in a rich and varied vegetation and forest types. According to China's natural geographic features and the distribution of natural forest, China's forest can be divided into 8 types, namely cold-temperate coniferous forest, mid-temperate coniferous and broad-leaved mixed forest, warm temperate deciduous broad-leaved forest, north subtropical evergreen broad-leaved forest, north subtropical deciduous broad-leaved forest, central-south subtropical evergreen broad-leaved forest, tropical monsoon rainforest and rainforest, alpine coniferous forest and mountain coniferous forest (Appendix table 3). The variety types of forests enabled the development of a wealth of species and genetic resources, producing great economic, ecological and social benefits (Appendix table 4, 5 and 6). However, there are also many species facing extinction or endangered. The "List of Rare and Endangered Plants in China" published in 1987 contained a total of 389 species of endangered plants, including 13 species of Pteridophyta, 71 species of Gymnosperms and 305 species of Angiosperms. Among 389 species of the list: 8 species were given level-1 priority for protection, 159 species were level-2 priority and 222 species were level-3 priority for protection. The "List of Wild Plants with National Priority for Protection" announced by the State Council in 1999 included 419 species and 13 categories (refer to taxa above species level), among which 67 species and 4 categories were given level-1 protection priority, 352 species and 9 categories were given level-2 protection priority. The list included 1 species of Cyanophyte, 3 species of fungi, 14 species and 4 categories of Pteridophyta, 40 species and 4 categories of Gymnosperms, 361 species and 5 categories of Angiosperms. All species of 13 categories such as Cyatheaceae, Dicksoniaceae, Isoetes, Ceratopteris, Cycas, Pseudotsuga, Taxus, Torreya, Cryptocoryne, Orchidaceae, Coptis, Peony section (Approximately 1,300 species) were included in the list. Accordingly, the total number of the wild plants with national priority for protection comes to about 1,700 species, displaying a large increase compared to the "List of Rare and Endangered Plants in China". In 2004 the SFA carried out a survey on the 189 species of wild plants with national priority for protection, and found that 57 species of them were severely threatened with extinction (critically endangered) and 47 species threatened with extinction (endangered), the level of threat remains severe (Appendix table 7).

1.1 Species diversity

The flora of China has an ancient origin and rich species diversity, with a large number of endemic species. China is one of the important centers of plant origins in the world. China has 32,800 species of higher plants, ranking the third in the world. Among them 291 families, 2,946 genera and about 25,000 species are Angiosperms; 10 families, 34 genera and 240 species are Gymnosperms. China has more than 8,000 species of woody plants accounting for about 54% of the total woody plants species in the world, among which about 2,000 species are arbor trees accounting for 24% of the world's total. Most of the mountainous areas in southern, central, and southwestern China were not affected by the Quaternary glacial, therefore allowing the survival of many relict species extinct in other areas of the Northern Hemisphere, such as Metasequoia glyptosroboides Hu et Cheng, Ginkgo biloba, Cathaya argyrophylla Chun et Kuang, Glyptostrobus pensilis (Lamb.)K. Koch, Davidia involacrata, Lindera flavinervia etc. China is abundant in endemic tree species, with 7 endemic families of Ginkgoaceae, Rhoipteleaceae, Sargentodoxaceae, Bretschneideraceae, Eucommiaceae, Tapisciaceae and Davidiaceae, 239 endemic genera such as Pseudolarix, Cathaya, Manglietiastrum etc., and about 1,100 endemic species such as Pseudolarix kaempferi, Pseudotaxus chienii, Taiwania cryptomerioides, Populus tomentosa etc. China has more than 1,000 tree species with important economic value, including more than 300 major afforestation species (Appendix table 4).

According to the main functions and usages, tree species will be divided into 5 categories: timber trees, economic trees, protection trees, gardening trees and energy trees.

1.1.1 Species Diversity of Timber Trees

China has a large number of timber tree species, which provided a solid foundation for cultivation

and genetic improvement. Currently, timber species (genus) widely used includes: *Cunninghamia lanceolata, Pinus massoniana, Pinus tabulaeformis, Platycladus orientalis, Populus, Paulownia fortunei, Larix gmelini, Pinus koraiensis, Picea asperata, Pinus armandii* Franch, *Pinus sylvestris* L. var. *mongolica, Pinus yunnanensis* Franch, *Fraxinus mandschurica, Salix matsudana, Quercus, Betula platyphylla, Betlua alnoides, Ulmus, Liriodendron chinense, Alnus cremastogyne, Catalpa bungei,* Bamboo, *Robinia pseudoacacia* L, *Eucalyptus, Acacia, Pinus elliotii, Pinus taeda, Pinus caribaea* etc. (Appendix table 4). Among them, *Larix* has 10 species and 1 variety, accounting for about 60% of the total number of *Populus* species in the world; *Populus* has 53 species, accounting for more than 50% of the total number of *Populus* species, 14 varieties and 1 form, accounting for 20% of the world's *Quercus* species; Bambusoideae has 500 species, accounting for about 50% of the world's total, and the area of *Phyllostachys edulis* was 3.868 million ha.

1.1.2 Species Diversity of Economic Trees

China has about 1,000 species of economic trees, and the uses of the species are mainly for oil production, medicinal, chemical raw materials, fruit production and woody vegetables (Appendix table 4 and 5). China has more than 200 tree species for oil production, including 50 species producing edibles, such as: Tea oil (*Camellia oleifera*), Walnut (*Juglans regia* L), Oil palm (*Elaeis guineensis*), Apricot (*Prunus armeniaca*), Hazelnut (*Corylus heterophylla*) etc.; more than 100 species of nut trees, mainly including Chestnut (*Castanea mollissima*), Chinese date (*Ziziphus jujuba*), Almond (*Prunus amygdalus*), Pistachio (*Pistacia vera*), Persimmon (*Diospyros kaki*) etc.; about 140 species of fruit trees, including Apple (*Malus domestica*), Pear (*Pyrus communis*), *Peach* (*Prunus persica*), Orange (*Citrus sinensis*), Almond (*Prunus armeniaca*), Plum (*Prunus salicina*), Kiwi fruit (*Actinidia chinensis*), lychee (*Litchi chinensis*), Longan (*Dimocarpus longan*), Red bayberry (*Myrica rubra*), Loquat (*Eriobotrya japonica*) etc., the yields of Apple and Pear account for 50% of the total world's production, both ranking the first in the world; nearly 1,000 species of medicinal plants, such as: *Acanthopanax senticosus*, *Schisandra chinensis*, *Eucommia ulmoides, Phellodendron amurense, Magnolia officinalis, Cinnamomum cassia, Lycium chinense*,

Ginkgo biloba, *Taxus chinensis* etc.; tree species for industrial raw materials includes Platycarya strobilacea, *Cinnamomum camphora*, *Acacia*, *Hevea brasiliensis*, *Rhus verniciflua*, *Vernicia fordii*, *Gleditsia sinensis*, *Melia azedarach*, *Pinus*, *Quercus variabilis* etc.. Other economic tree species include Tea trees, Mulberry, Chinese toona (*Toona sinensis*), Aralis (*Aralia elata*), Chinese prickly ash (*Zanthoxylum bungeanum*) etc.

1.1.3 Species Diversity of Protection Trees

Tree species for protection purposes have strong adaptability and play an important role in water and soil conservation, desertification combating, farmland and coastal shelterbelt forest construction. Common species of arbor trees for protection purposes include: Platycladus orientalis, Prunus armeniaca, Robinia pseudoacacia, Casuarina equisetifolia, Populus euphratica, Sonneratia caseolaris, Bruguiera gymnorrhiza, Quercus acutissima, Quercus variabilis, Pinus sylvestris var. mongolica, Salix matsudana, Fraxinus chinensis, Populus bolleana, Populus davidiana, Elaeagnus angustifolia etc.; shrub tree species include Hippophae rhamnoides, Calligonum mongolicum, Salix psammophila, Tamarix chinensis, Caragana microphylla, Haloxylon ammodendron, Sabina vulgaris, AmorpHa fruticosa, Nitraria tangutorum, Hedysarum scoparium, Areca catechu etc. (Appendix table 5, 6). Protection tree species have a wide range of variation, providing a wealth of tree species that can be selected for ecological purposes. For example, China has about 256 species and 63 varieties of Salix, accounting for about half of the world's total number of Salix trees, and they have widely different salinity tolerance. For mild saline-alkali soils suitable species are Salix matsudana and Salix integra, for moderately saline-alkali soils the species are Salix alba, and Salix psammophila etc. The genus Hippophae has 7 species and 4 subspecies, accounting for more than 70% of the total number of *Hippophae* species in the world.

1.1.4 Species Diversity of Gardening Ornamental Trees

China has rich ornamental tree species with more than 1,200 species, major ornamental arbor tree species (family, genus) include: *Ginkgo biloba, Davidia involucrate, Cedrus deodara,*

Liriodendron chinense, Pinus bungeana, Sophora japonica, Cupressus funebris, Platanus acerifolia, Podocarpus macrophyllus, Aesculus chinensis, Cinnamomum camphora, Ficus microcarpa, Koelreuteria paniculata, Acer, Magnolia, Osmanthus fragrans, Lagerstroemia indica, Malus spectabilis; major ornamental shrubs and woody lianas species (genus) include: Paeonia suffruticosa, Rhododendron, Prunus mume, Syzygium aromaticum, Camellia japonica, Buxus sinica, Berberis, Forsythia Suspensa, Jasminum nudiflorum, Kolkwitzia amabilis, Lonicera maackii, Wisteria sinensis, Rosa multiflora, Hibiscus syriacus etc. (Appendix table 6). China has more than 150 Acer species, accounting for 75% of the world's total; 11 genera and about 140 species of Magnoliaceae, accounting for respectively 73% and 53% of the world's total numbers of genera and species; 15 genera and 500 species of Theaceae, accounting for 59% of the world's total; over 20 species of Syringa, accounting for more than 65% of the world's total, and 82 species of Rosa, accounting for 41% of the world's total.

1.1.5 Species Diversity of Energy Trees

China has a wide range of energy tree species, with a large number and a wide distribution range, the total amount of forest biomass energy is more than 18,000 billion kg. There are 60 major fast-growing and high-quality firewood species, including arbor species such as Pinus massoniana, Pinus elliottii, Eucalyptus globulus, Eucalyptus camaldulensis, Eucalyptus grandis, Eucalyptus tereticornis, Eucalyptus urophylla, Quercus acutissima, Quercus variabilis, Castanopsis hystrix, Lithocarpus glaber, Schima superba, Alnus cremastogyne, Casuarina Melia azedarach, Salix matsudana, Choerospondias axillaries, equisetifolia, Robinia pseudoacacia, Subgenus Armeniaca etc. (Appendix table 4); shrub species such as Lespedeza (contains 40 species), Haloxylon ammodendron, Tamarix ramosissima, Tamarix austremongolica etc.; more than 10 major tree species for oil production, including Pistacia chinensis, Jatropha curcas, Vernicia fordii, Sapium sebiferum, Xanthoceras sorbifolia, Swida wilsoniana etc. The area of growing oil production crops is continually expanding, and significant progress has been achieved in the research and development of bio-fuels. In October 2010, bio-fuel produced from

Jatropha curcas has been used as airplane fuel for test.

1.2 Intra-species diversity

Intra-species genetic diversity includes genetic variation at different levels of provenance, populations and individual, it is evaluated by morphological, adaptive and growth characteristics as well as isozyme and DNA markers. Up to 2010, analyses and evaluation of genetic diversity and variation have been carried out for more than 100 arbor and shrub species (genera), such as *Cunninghamia lanceolata*, *Pinus*, *Larix*, *Populus*, *Platycladus orientalis*, *Picea*, *Betula*, *Quercus mongolica*, *Liriodendron Chinense*, *Fagus longipetiolata*, *Alnus cremastogyne*, *Eucalyptus*, *Prunus mume*, *Calyx canthus*, *Syringa*, *Paeonia suffruticosa* etc. (Appendix table 9).

1.2.1 Evaluation techniques

Intra-species genetic variation of forest trees is mainly evaluated by morphological, growth and adaptive characteristics as well as wood properties (Appendix table 9). Variation of morphological characteristics was usually evaluated through sample surveys of the wild natural populations using those characteristics usually without environmental influences such as shapes of seed and fruit. Intra-population variation was usually evaluated with parameters of standard deviation, coefficient of variation, variance, Shannon information index etc.; the evaluation of inter-populations variation should be based on such parameters as variance components, genetic distance and phenotypic differentiation coefficient. The analyses and evaluation of geographic variation patterns of different provenances were usually based on the provenance/family trials, progeny trials and clonal tests.

Isozyme and DNA markers have been widely used in the evaluation of genetic diversity (Appendix table 9). Before the 1990s, isozyme analysis was mainly used to evaluate genetic diversity, and more than 20 enzyme systems, for example ADH, PGM, PGD, have been frequently used. After the 1990s, with rapid development of molecular techniques, analysis of DNA markers became the

major method, frequently used DNA markers include RFLP, AFLP, RAPD, ISSR, SSR and others. In recent years, new technologies such as molecular chip and sequencing have been gradually applied. Frequently used parameters for isozyme and DNA analyses include allele frequencies and their distribution, variance of genotypic frequencies, average number of alleles per loci, effective number of alleles, percentage of polymorphic loci, Wright's inbreeding coefficient and Nei's diversity index, Shannon information index, coefficient of genetic differentiation and genetic distance.

1.2.2 Geographic variation of provenances

Most tree species in China are still in wild conditions and distributed in a wide geographical area with diverse growing conditions. Long-term adaptation, evolution and systematic development have resulted in significant differences in morphology, growth and adaptability, thus forming a rich Intra-species genetic variation. From the beginning of the 1980s China started to carry out a series of provenance trials for tree species. Up to now, provenance trials have been conducted for more than 70 important afforestation species such as Pinus tabulaeformis, Pinus massoniana, Pinus taeda, Pinus koraiensis, Larix principis-rupprechtii, Pinus elliottii, Pinus yunnanensis, Larix gmelinii, Pinus armandii, Casuarina equisetifolia, Picea koraiensis, Taxodium distichum, Taxodium ascendens, Taiwania flousiana, Platycladus orientalis, Sassafras tsumu, Acacia mearnsii, Betula platyphylla, Ulmus pumila etc. The research results showed: the majority of tree species in China had significant or very significant inter-population and intra-population genetic variation, and the variance components of inter- and intra-population genetic variation varied a lot among different species; most species displayed a significant geographical variation mainly reflected in morphological characteristics, growth, adaptability, and wood properties. The growth and adaptability were correlated to the locations and climatic factors of provenances, and most species manifested a clear pattern of latitudinal variation, while very few species showed a pattern of both latitudinal and longitudinal variation. Intra-species genetic variation of some typical species was summarized below:

Cunninghamia lanceolata is one of the major timber tree species in China's subtropical regions.

Research results showed: most traits of the species revealed a gradient trend from south to north, the adaptive traits such as phenological phases and cold tolerance were in close negative linear correlation with the latitudes. Growth and stress resistance were related to the climatic and ecological conditions and mainly in a trend of latitudinal variation. Clinal variation was found in growth, wood properties and branching characteristics.

Pinus massoniana is one of the major timber tree species in China's subtropical regions, the results of range-wide provenance trails showed: differences existed in growth, growth rhythm, phenological phases, disease and pest resistance, and the differences were related to the latitudes of provenances; the Intra-species genetic variation was in a gradient trend from south to north. The wood basic density displayed significant provenance differences, and its correlation with latitude was highly significant, gradually decreasing from north to south, but has nothing to do with longitude.

Pinus tabulaeformis is mainly distributed in northern China, and an important afforestation and gardening ornamental tree species. The results of range-wide provenance trails indicated: significant geographic variation existed in germination, phenophase, growth, morphology and cold resistance, and mainly in a pattern of continuous variation. Based on the climate ecotypes, at the same time taking the variation of parental generation into consideration, Pinus tabulaeformis was divided into 9 seed zones and 22 sub seed zones.

Platycladus orientalis is an important afforestation species in rocky mountain areas. Geographic variation of main traits was mainly in a latitudinal pattern, eastern and southern provenances grew faster than the Western and northern provenances, but with poorer drought and cold resistances. From north to south, the distribution area of the species can be divided into 5 provenance zones and 2 provenance regions, northeast and southwest. Significant differences were found among provenances in survival rate of planting and growth of young trees, with a higher survival rate of eastern and southern provenances than of western and northern provenances; in areas free of freezing damages, growth southern provenances was higher than northern provenances.

Populus tomentosa is endemic to China, mainly distributed in the region of Huang, Huai and Hai rivers, playing an important role in the forestry industry and ecological construction in the middle and lower reaches of the Yellow River. Research showed that, phenotypic variation in the species is extremely large; significant genetic variation existed both between and within provenances, and

the intra-provenance variation (80.26%) was significantly higher than the inter-provenances variation (19.74%); clonal variation within provenance was the main source of genetic diversity of *Populus tomentosa*. The species has a variety of forms of natural variation, e.g. Jiangan, Yixian, Pyramidalis, Truncate, Xiaoye, Henan, Mikong, Jingxi etc.

Ulmus pumila is an important timber species for afforestation in northern China. Range-wide provenance trials showed that, significant differences existed among provenances, and the growth decreased with latitudinal increase of provenances; provenances in the southern distribution in the basin of Yellow River and Huai River grew faster, and the northern provenances grew slower, revealing a pattern of one-way clinal variation while the cold resistance was in the opposite.

1.2.3 Genetic diversity

Isozyme and DNA marker analyses showed that most tree species have a wealthy genetic diversity, and the intra-species genetic diversity is mainly distributed within populations (60-90%), e.g. *Pinus tabulaeformis, Pinus massoniana, Larix principis-rupprechtii, Larix gmelinii, Larix olgensis, Pinus koraiensis* Sieb et Zucc etc. Different tree species have different distribution of diversity among populations, and species with no obvious inter-population differences include *Pinus massoniana* and *Larix gmelinii* etc.; species with significant inter-population differences include *Pinus tabulaeformis, Pinus armandii, Larix olgensis, Pinus koraiensis* Sieb et Zucc, *Quercus mongolica* etc. In recent 10 years, China has carried out analyses of genetic diversity using isozyme or DNA markers for more than 100 species, such as *Pinus massoniana, Pinus tabulaeformis, Cunninghamia lanceolata, Ulmus pumila, Davidia involucrata, Larix, Populus, Picea*, etc. (Appendix table 9). The results of the analyses of typical species are summarized as follows:

RAPD markers analysis of 12 geographical provenances of *Cunninghamia lanceolata* showed that the genetic distances among provenances ranged from 0.1932 to 0.4667. The cluster analysis showed that provenances of Guangdong Xinyi, Guangxi Wuzhou, Hunan Huitong, Hunan Jianghua, Guizhou Jinping and Jiangxi Quannan were in a group, provenances of Fujian Shaxian, Zhejiang Kaihua, Hubei Xianning and Anhui Xiuning were in a group, and Sichuan Yaan

and Shaanxi Nanzheng were respectively independent from other groups.

An isozyme analysis of natural populations of *Pinus massoniana* showed that the species has a wealthy Intra-species genetic variation, but the extent of differentiation among populations was relatively small, and most of the variation existed within populations, inter-populations variation accounted for only about 2% of the total variation, and population differentiation was not significantly related to geographic distances among populations.

An isozyme analysis of *Pinus tabulaeformis* showed that genetic diversity of *Pinus tabulaeformis* in natural populations had negative correlations with the latitude and longitude; genetic diversity was high in the central-western and southern parts of the natural distribution and was low in the northeastern part. Analysis of genetic structure of natural populations through RAPD and ISSR markers showed that certain degrees of variation and differentiation existed among populations, and more than 85% of the total genetic variation was found within populations, only 15% of the variation was among populations.

A study of isozyme variation of *Populus tomentosa* showed that: high similarity existed among provenances, 97.26% of genetic diversity was found among clones within provenances. The analysis by AFLP markers showed that: the percentage of polymorphic loci was 65.17%, the average number of alleles per locus was 1.991, the average effective number of alleles was 1.479, and the Nei's genetic diversity index was 0.289, the Shannon information index was 0.445. The average number of polymorphic bands of 9 provenances was 280.7, the average percentage of polymorphic bands was 60.49%, and significantly differences were found among provenances.

Isozyme analysis of *Quercus mongolica* found that: genetic diversity of natural populations was low (He = 0.099), lower than the average (He = 0.211) of natural populations of North American and European oaks. Analysis AFLP markers of natural populations of *Pinus bungeana* showed a relatively high genetic diversity mainly existing within populations (about 89.8%). A PCR based ISSR study of natural populations of *Betula platyphylla* found a relatively high genetic diversity within the species, the proportion of polymorphic loci was 80%, and the Shannon information index was 0.4045.

1.3 Values of FGR

1.3.1 Main values of diversity

Forest genetic resources not only have direct values of providing products and ecological services, but also have indirect value of genetic diversity.

The diversity of genetic resources is the basis of genetic improvement. The genetic improvement can increase yield, improve quality, enhance resistance, and develop varieties through selection and breeding to meet the specific needs. For instance, the fast-growing provenances of *Cunninghamia lanceolata*, Rongshui and Sanjiang; over 300 chestnut varieties for edible and timber uses; more than 1,300 peony varieties for ornamental and medicinal uses; various types of thin-shelled, thick-shelled and leatheroid walnut; a number of different walnut varieties for edible, oil-yielding, beverages, antiques and timber uses. In addition, many other species also have diverse varieties.

Diversity of genetic resources is a driving force for evolution and adaptation to future changes, allowing tree species to adapt to environmental and climatic changes, and providing basic materials for developing different varieties adaptive to a wide range of environments and multiple uses. For example, the natural distribution of *Larix chinensis* has extended upwards by more than 50 m due to its adapted to the climate changes in recent several decades.

1.3.2 Priority for conservation

Based on the importance of species, current status of genetic resources and the extent of threat, a total 478 specie grouped into 4 categories are identified for priority conservation: 1) 87 timber species such as *Pinus massoniana*; 2) 38 economic, sand-fixing and water conservation species such as *Hippophae rhamnoides*; 3) 43 exotic tree species such as *Robinia pseudoacacia*; 4) 310 species listed as level 1, 2, 3 of rare and endangered tree species by the government such as *Taiwania flousiana*. Species of the first 3 categories are currently the main species for forestry industry development and ecological construction, and those of the fourth category must be conserved in rescue (Appendix table 4).

The 478 tree species identified for conservation were divided into three priority levels: 1) 73 species which need urgent conservation. These species are important for forestry industry development and ecological construction. Populations of species are threatened or endangered, therefore the resources urgently need to be conserved, or species were listed as level 1 or 2 priorities for conservation. 2) 173 species, their genetic resources are important, but can be considered in a long-term point of view, or their importance is slightly low than the species with level 1 conservation priority, or listed as the level 2 conservation priority species. 3) 232 species, important to the forestry industries, or important to ecological environment and renewable resources, or listed as level 3 conservation priority.

1.4 The state of conservation

Since the early 1990s, China began to carry out FGR conservation and related researches. Up to date, a conservation system of FGR in line with China's actual condition has been preliminarily established by forming a framework of conservation and utilization frameworks backboned by the National FGR Platform and the national production bases of genetically improved seeds and plant stocks. Combination of *in situ, ex situ* and facility conservation was identified to be an effective and safe model of FGR conservation.

Priority of choosing conservation methods is set according to the following principles:

 Priority is given to in situ conservation when target species has comparatively integral natural forests in its original distribution; ex situ conservation acts as the supplement or duplication for evaluation and utilization; and facility conservation acts as backup of the conservation.

- 2) Ex situ conservation is give priority when natural forests of the target species were severely destructed in the original distribution, or in a defective state, or with occasional artificial cultivation, the natural or secondary forests should be conserved as far as possible; and facility conservation acts as a backup of the conservation.
- 3) If target species remains only scattered individual trees, clumps of very few secondary defective forests in the original distribution, priority is given to *ex situ* conservation of the defective populations, at the same time the defective natural forest (land) should be conserved *in situ*; facility conservation acts as a backup conservation.
- 4) For species undertaken breeding or genetic improvement, all the breeding materials (including varieties) should be conserved, and priority should give to *ex situ* conservation; facility conservation can be carried out at the same time.

Since 2003, *in situ* conservation sites with population as conservation unit were set up in Heilongjiang, Hebei, Inner Mongolia (Autonomous Region), Shanxi, Ningxia (Hui Nationality Autonomous Region), Henan, Guizhou, Sichuan, Hubei provinces, and a total of 51 *in situ* conservation sites for species such as *Pinus bungeana*, *Thuja sutchuenensis*, *Tetraena mongolica* and other species were established. A network of *ex situ* conservation has been established based on existing forest flora and tree breeding zones with focuses on genetic variation within species which is the conservation unit. An *ex situ* conservations network consisting of 22 sites of multi-species ,13 sites of single-species with national priority, 131 sites of single-species with regional/local priority, 160 arboreta and botanic gardens have been established respectively in 5 climatic zones, i.e. cold temperate, temperate, subtropics, south subtropics and north tropics. In addition, a cold storage with limited capacity has been built. Up to date, a total of about 150,000 accessions of major tree species in form of large populations, provenances (stands), families, plus trees, clones and other genetic resources, and more than 2,000 species of arbors and shrubs, flower plants, bamboo and rattan have been conserved throughout the country.

1.5 Influencing factors

The main factors affecting diversity of FGR include over-exploitation and irrational utilization of forest resources, habitat deterioration, land use changes, genetic erosion and extreme weather events.

1) Over-exploitation and irrational utilization of forest resources lead to fragmentation and severe degradation of natural forests, loss of genetic resources of many rare species, and dramatic reduction of genetic diversity. For example, species like *Pterocarpus indicus*, *Phoebe bournei*, *Erythrophleum fordii*, *Dalbergia hupeana*, *Thuja sutchuenensis*, *and Castanopsis hystrix* have scattered defective natural stands only in some local areas, their forest resources almost exhausted and genetic resources are seriously threatened.

2) Habitat deterioration and land use changes lead to destruction of growing conditions, decline of adaptability, and accelerated loss of FGR. During the five years from 2004 to 2008, the area of forest land shifted to non-forest land due to deforestation, natural disasters, development preprograms reached 8.32 million ha, of which nearly 85% was reversed into agricultural uses. Forest degradation and habitat deterioration accelerated the loss of FGR.

3) Single model of afforestation, single species in plantations, large scale artificial plantings of single species or single clones and irrational transfer of seeds have worsened genetic erosion, leading to decline of species diversity and within-species genetic diversity. In existing plantations, just over 20 species were utilized, and *Cunninghamia lanceolata*, *Populus*, *Pinus massoniana*, *Larix* and *Eucalyptus* account for over 40% of the total plantation area. The diversity of plantations is increasingly lowered, and the stability of plantation stands is declined, imposing potential threat to sustainable forest management.

4) Frost, snowstorm, continuous drought and other extreme climates together with diseases and pests as well as forest fires constituted the cause for decline of FGR diversity. The snowstorm catastrophe occurred in south China in early 2008 damaged 18.60 million ha of forests, and the
wide-range severe drought occurred in the end of 2008 caused damages to 7.86 million ha of forests. In 2009, subject to extreme weather conditions and other factors, 11.57 million ha of forests were influenced by the occurrence of forest pests. With the accelerated pace of afforestation, the area of plantations increased rapidly, but forest disease and pests will also enter a period of frequent occurrences which will cause even more severe damages to forests, therefore, breeding for disease and pest resistance from the FGR will become more important.

1.6 Major problems, needs and priorities for future work

1.6.1 Major problems and needs

1) Collection and conservation of FGR is a basic, long-term, public welfare and strategic work, it needs to formulate policies concerning FGR conservation and sustainable utilization. Collection and conservation of FGR also requires long-term and stable financial support, it needs to increase the financial investment to promote effective conservation and rational utilization of FGR.

2) The dynamic changes of inter- and intra-species diversity of FGR are not clear, and there is a lack of technology for systematic dynamic monitoring. It needs to establish the monitoring and evaluation system of FGR as soon as possible, thus to realize the dynamic monitoring efficient management and sustainable utilization of FGR.

3) Collection, conservation and utilization of FGR involve multi-disciplines and multi-sectors, and severe interdisciplinary overlaps. It needs to establish a research and development center specially engaged in FGR research and conservation as soon as possible, to organize and coordinate nationwide FGR research and development activities, and to build a long-term and stable professional team.

19

1.6.2 Priorities for future work

1) Intensify FGR conservation, research and utilization, develop the system of technical standards for FGR, establish a national FGR cooperative, and continue to develop the National FGR Platform and the network of conservation banks, to promote ABS of FGR.

2) Carry out FGR surveys, documentation and cataloging, monitoring and evaluation. Identify priority species for conservation, carry out the protection, monitoring and evaluation of genetic diversity, strengthen monitoring of genetic erosion, and develop technical measures to prevent or reduce genetic erosion.

3) Carry out gene discovery and innovative utilization of the FGR. Carry out the evaluation and utilization of species with important and potential economic values, identify and exploit genes determining critical characteristics, develop new and superior germplasms, and to promote its utilization, improve the efficiency of FGR uses.

4) Intensity of dissemination and training of FGR, and improve public awareness towards its importance as well as to promote public participation and awareness of protection.

Chapter 2 The state of *in situ* conservation

In situ conservation is the main method of conserving genetic resources of species existing in natural forests and secondary natural forests, especially those with long growing cycle and difficulties in artificial cultivation. Nature Reserve-based *in situ* FGR conservation was started early in China. In the past 10 years, it has been developed rapidly and has achieved significant progress. China already started to carry out FGR surveys and inventories which are expected to complete in 2015. China has conducted a national wildlife resources survey, making clear about the resources and distribution of over 160 rare or endangered species (Appendix table 10). The survey found that the number of threatened and endangered species reached 1 200, about 70% of forest species have endangered populations, requiring urgent and intensified protection.

2.1 Types of in situ conservation

There are three types of *in situ* conservation of FGR in China: area, population and individual, each of which has different roles, functions, conservation units and management measures (Table 2-1).

Туре	Specific forms	Roles and functions	Protection units and
			management measures
Area	Nature reserves,	Reserve of biological species	Area as conservation unit,
	protected plots,	and shelter for rescuing	independent institution for
	forest parks,	endangered species,	management and
	scenic areas	conservation of species	administration, e.g. Nature
		diversity, genetic diversity	Reserve Administration, Forest
		and ecosystem diversity,	Park Administration. Usually
		continual, systematic and	protection and tourism
		long-term observation,	development combined

Table 2-1, Types of in situ FGR conservation in China

Туре	Specific forms	Roles and functions	Protection units and management measures
		studies of reproduction and	together. Mainly evolutionary
		domestication of rare	FGR conservation.
		species.	
Population	In situ	Conservation of populations	Stand as conservation unit,
	conservation	of trees with superior traits,	usually managed by Nature
	forest, natural	the largest contribution to	Reserves or seed production
	forest for seed	propagation and afforestation	bases, Observation and
	collection	from in situ conservation, for	dynamic monitoring based on
		both dynamic monitoring and	conservation, germplasm
		evaluation and utilization.	collection for research or
			production.
Individual	Ancient trees,	conservation of individual	Individual as conservation unit,
	rare trees	trees with superior	Afforestation Committee and
		characteristics, ornamental,	Forestry Bureau are usually the
		ecological and history	competent authorities,
		educational functions.	maintained and protected by
			the owners, collection is not
			allowed except for research
			and educational purposes.

2.2 System of *in situ* conservation

2.2.1 Nature reserve

Up to 2010, China has established 2,588 different types of nature reserves, with a total area of 149 million ha, accounting for about 14.9% of the land area, increased by 125.8% and 69.1%

respectively in number and area compared to 1999 (Figure 2-1). The number and the area of nature reserves tended to be gradually stabilized.

Figure 2-1, Development trends of nature reserves in China

There are 2,035 nature reserves in forestry sector, with a total area of 123.3 million ha, accounting for 78.6% and 82.8% respectively of the total number and the total area nature of reserves, covering about 90% of all types of Wild Fauna and Flora, 85% of terrestrial natural eco-system types and 65% of higher plant communities.

Up to 2010, more than 50,000 various types of protected plots were established of forests, wetlands, wildlife and their habitats, ancient and rare trees, cultural heritages and natural landscapes, with a total area of more than 150 million ha. The protected plots are mostly distributed in densely populated areas in southern China, mostly in small size but of great value for protection, and not suitable for the establishment of nature reserves. The protected plots are particularly suitable for protecting scattered rare and valuable endangered species.

Nature reserves of forestry sector accounted for 76.9% of the total area of *in situ* conservation, playing a main role (Figure 2-2). Compared to other forms of *in situ* conservation, nature reserve has intensity of protection, bigger size and more investments (Table 2-2).

The implementation of "Wildlife Conservation and Nature Reserve Development Program" and "Natural Forest Protection Program", brought the main habitats of more than 300 species of key wild woody plants into protection, stable artificial populations and communities have been established for over 1,000 species of wild plants, and breakthroughs have been made propagation of a number of endangered species. FGR conservation of precious, rare and endemic species in natural forests has been improved.

2.2.2 Forest park

Up to 2010, China has set up 2,583 Forest Parks at all levels with a total area of 16.78 million ha, accounting for 10.4% of the total area of *in situ* conservation (Figure 2-2). Among those, the total number of National Forest Parks has reached 747, and the total area reached 11.78 million ha. Forest Parks covered about 40% of wild plant types, 32% higher plant communities, about 10% of natural forest.

Tuno	Number	Area (ba)	Conservatio	Protection	Utilization
Туре	Indunia	Area (na)	n type	intensity	intensity
All nature reserves	2588	149000000	Area	Higher	Low
of forestry sector	2035	123300000	Area	Higher	low
Protected plots	50000	1500000	Area	moderate	low
Forest parks	2583	16780000	Area	moderate	low
Scenery parks	885	18140000	Area	low	low
Seed production stands	>100	500000	population	moderate	high
In situ conservation forests	51	416	population	high	moderate
Ancient and rare trees	2850000	28500*	individual	high	low

Table 2-2, Statistical comparison of in situ conservation types

*: The area of individual trees is calculated at about 100 m² of land.

24

Figure 2-2, Different types of area percentage of in situ conservation

2.2.3 Scenery park

Up to 2009, China has established 885 scenery parks (excluding forest parks, nature reserves), consisting of 187 national-level scenery parks and 698 provincial-level scenery parks, with a total area of 18.14 million ha, accounting for about 1.89% of China's total land area, and 11.4% of the total area of *in situ* conservation (Figure 2-2). 21 national scenery parks including Taishan, Huangshan, Zhangjiajie, and Jiuzhaigou have been listed by the UNESCO as World Natural Heritage or the World Natural and Cultural Heritage.

In addition, China has built 199 National Wetland Parks, protecting about 0.92 million ha of wetland, part of the FGR in the National Wetland Parks are protected in appropriate ways.

2.2.4 In situ conservation forest

China has developed technical standards such as the "Technical codes of setting *in situ* FGR conservation sites", providing detailed specifications for selection of species and populations, size of conservation plots, characteristics of observation, collection of samples and subsequent protection measures of *in situ* conservation.

Endangered or threatened populations of a species are protected by *in situ* conservation, sample

populations of the species is taken as the conservation unit, in which target species should have more than 30 to 50 individuals normally blooming and fruit bearing. Since 2003, "The National FGR Platform" has set up 51 locations of *in situ* conservation for more than 40 species such as *Pinus bungeana*, *Thuja sutchuenensis* and *Tetraena mongolica* with populations as conservation unit in some provinces (autonomous regions), each location with an area of 3-10 ha. The conservation stands and sample individuals were measured, photographed, seed collected and labeled for protection, follow-up observations will be carried out every 10 years. *in situ* conservation stands can be set up either inside or outside Nature Reserves, for example, 6 *in situ* conservation stands of *Pinus bungeana* have been set up, and only one of them is located in nature reserve.

In addition, approximately 50 million ha of seed collection forests of more than 100 species have been established, of which some natural forests are basically *in situ* conservation stands. And information and actual materials of these *in situ* conservation forests have been made available for sharing as services provided by the National FGR Platform.

2.2.5 Ancient and rare trees

Up to 2009, China has 2.853 million ancient and rare trees across the country except nature reserves, forest parks, and the two major state-owned forest regions in the northeast and the southwest, displaying an increase of 7 times compared with 339,000 trees registered in the 1999 survey. The number of ancient trees was 2.847 million, accounting for 99.8% of the total; and the number of rare trees was 5,758, accounting for 0.2% of the total. According to the national standards of grading ancient trees, there were 51,000 level-1 national ancient trees (age \geq 500 years), accounting for 1.8% of the total number; 1.043 million level-2 national ancient trees (200 years \leq age <500 years), accounting for 36.6% of the total; 1.753 million level-3 national ancient trees (100 years \leq age <200 years), accounting for 61.6% of the total (Table 2-3).

On the basis of the inventory of ancient and rare trees, a database and a digitalized photo library

of the ancient and rare trees have been established, together with a software package developed specifically for managing the information, and a national information network has been established for protection and management of ancient and rare trees.

Level	Age (year)	Number (tree)	% of the total
Level-1 ancient tree	≥500	51000	1.80%
Level-2 ancient tree	200-499	1043000	36.60%
Level-3 ancient tree	100-199	1753000	61.60%
Sum		2847000	99.80%
Rare trees		5758	0.20%
total		2853000	100%

Table 2-3, Statistics of ancient and rare trees

2.3 Techniques for *in situ* conservation

2.3.1 Setting of in situ conservation forest

- 1) Priority species for *in situ* conservation was determined by the existing quantity of the species, the socio-economic value and the depletion of FGR.
- 2) The number of populations or stands of target species, the size of area and effective number of trees for in situ conservation were determined according to the result of genetic diversity analysis, combined with data obtained from field surveys.
- 3) Use GPS and GIS technologies to determine the 3-D positions of *in situ* conservation plots and individual trees, and labels, reference posts and maps were used to ensure the accuracy of positioning and easy for repeated surveys and monitoring of the *in situ* conservation forests.

2.3.2 Monitoring and evaluation and maintenance of in situ conservation

1) Populations and individual trees were measured at the same time on species composition, age

structure, regeneration ability, succession direction, growth traits, diseases and pests, fruiting ability, photos were taken with information on the stands recorded, all information was put into databases.

- Using non-destructive sampling methods to collect sample materials for observation, research, facility conservation and utilization.
- 3) For species difficult to propagate and with very limited number trees, studies on propagation techniques were carried out, such as breaking dormancy, removal of hard seed coat, promoting pollination and fruiting, improving micro environment for germination.
- 4) A co-management system was established with owners, e.g. nature reserves and forest farms. Relying on the owners to conduct patrol, observation, and disease and pest control, at the same time, the national FGR project and local responsible agencies jointly conduct regular observations, diagnosis and dynamic monitoring and analysis for long-term maintenance of the stability and integrity of the *in situ* conservation.

2.3.3 Utilization of conserved resources

- 1) Carry out propagation studies on the rare and endangered species within Nature Reserves in older to carry out *ex situ* conservation and artificial reproduction for utilization.
- 2) Collecting seeds, pollen or other vegetative organs from plus trees, superior provenances, ancient and rare trees, *in situ* conservation forests and other valuable wild trees, mainly for resource conservation and scientific researches.

2.4 Information systems

China has established a website of Chinese nature reserves (http://www.nre.cn), providing information on many wild forest resources. A website for the National FGR Platform was also established (http://www.nfgrp.cn), providing information on 1,200 accessions of *in situ* FGR conservation. The development of database on forest parks was officially launched in 2010.

Since 2003, trainings on *in situ* FGR conservation have been carried out regularly in order to enhance capacity building of institutions and professional teams.

2.5 Main problems, needs and future priorities

2.5.1 Main problems and needs

- Lack of adequate financial support and relevant policies limited the establishment and in-depth studies of *in situ* conservation forests acting as FGR functional areas, and need sustained and steady capital investment and policy support.
- 2) A large number of *in situ* conserved FGR have not been studied systematically, the genetic resources have not been effectively utilized. Due to the lack of technical basis for determining *in situ* conservation unit, it needs to improve the technical system for *in situ* FGR conservation.

2.5.2 Future priorities

- Carry out assessment and monitoring of *in situ* conserved FGR, establish a system of FGR inventory and sampling survey, evaluate genetic diversity of *in situ* conserved populations, monitoring the dynamic changes.
- 2) Carry out *in situ* conservation management for the purpose of maintaining genetic diversity of the target species. For those important FGR not ready to establish nature reserves or protected plots, protection sites can be set up within the original distribution in order to strengthen the management of *in situ* conservation with population as conservation unit, therefore to improve the efficiency of FGR management and utilization.
- 3) Strengthen technical studies of *in situ* FGR conservation; improve the technical system of protection. Focuses will be put on establishment and monitoring of *in situ* conservation forests, restoration and rehabilitation of endangered populations of *in situ* conservation, mechanism of threatening and propagation, evaluation and exploitation of FGR.

Chapter 3 The state of FGR *ex situ* conservation

Ex situ conservation is an important way of conserving FGR, includes *ex situ* conservation forest and facility storage conservation, the former is the main form of *ex situ* conservation and the later is a supplement to the former. In China, most tree species under cultivation are conserved in *ex situ* conservation forest. China has built a preliminary *ex situ* FGR conservation system including multi-species collection, single-species collection, local (regional) collection and low-temperature storage. A large amount of FGR has been conserved by the system, and activities of FGR characterization, evaluation, exploitation and utilization of these conserved FGR have been conducted.

3.1 Types of *ex situ* conservation

3.1.1 Ex situ conservation bank

Ex situ conservation bank refers to conservation forests or nurseries used to keep FGR as living trees, including those established for growing FGR collections, plantations as production bases of genetically improved seeds or propagation materials, experimental plantations for genetic improvement, botanic gardens and arboreta for display, dissemination of science and taxonomic studies.

Based on roles and functions, *ex situ* conservation banks are grouped into four types, i.e. multi-species collection, single-species collection, local (regional) collection, and display collection (Table 3-1). Institutions engaged in *ex situ* conservation mainly include research institutes, educational organizations, production and management agencies of seeds and propagation materials, botanical gardens and arboreta.

30

Туре	Establishment	Status of diversity			
Multi-species collection	Established by the National FGR Platform	Samples of populations, families and individuals representing Intra-species genetic diversity.			
Single-species collection	Established by specific FGR projects	Same as above			
Local (regional) conservation	By local agencies engaged in seed and propagation material production	Selected or improved breeding and propagation materials.			
Display collection	By botanical gardens, arboreta	Samples of species representing inter-species diversity, science dissemination and taxonomic studies			

Table 3-1: Types of ex situ FGR conservation in China

3.1.2 Facility storage conservation

Facilities storage conservation refers to the low-temperature storages which conserve seeds and other propagation materials. Compared to *ex situ* conservation bank which conserves living plants, facility storage conservation has advantages such as less space demanding, long-term conservation, high security due to central and intensive control, large storage capacity.

3.2 The system of *ex situ* conservation

As described earlier in this chapter, *ex situ* conservation consist of *ex situ* conservation banks and facility storages conservation. *Ex situ* conservation banks include multi-species collection, single-species collection, local (regional) collection, and display collection.

3.2.1 Multi-species collections

Multi-species collections are conservation banks established by the National FGR Platform, featured with early establishment, large quantity of conserved FGR, highly representative and typical, playing a fundamental and central role in FGR conservation. At present, 22 sites of

multi-species collections have been built respectively in middle temperate, warm temperate, subtropics and tropics of China, with a total area of 420.6 ha (Table 3-2) and a number of more than 2,000 species including over 120 major species (Appendix Table 11). In addition, studies in FGR collection, propagation and conservation have also been carried at different levels of species/population, population/family, population and individual.

. .

Conservation Method	Collection Types	No	Name and location	Area (ha)	Target species	major species	No. of accessions
		1	FGR conservation bank of the middle-temperate (Heilongjiang)	20.1	Major tree species in mid-temperate	22	4,420
		2	FGR conservation bank of northwestern warm temperate (Inner Mongolia)	12.3	Desert trees and shrubs species	10	1,680
		3	FGR conservation bank of warm temperate plains and mountain regions (Beijing)	9.3	Major timber and gardening ornamental tree species	25	984
		4	FGR conservation bank of middle warm temperate (Shanxi)	22.5	Major afforestation and economic tree species	15	2,534
		5	FGR conservation bank of eastern warm temperate (Shandong)	21.0	Afforestation species like Poplar and economic species	16	2,000
		6	FGR conservation bank of southern warm temperate (Henan)	17.0	Endemic species	25	2,211
		7	FGR conservation bank of western warm temperate (Shanxi)	14.1	Endemic species, rare and endangered species	12	620
		8	FGR conservation bank of unique economic trees in warm temperate desert (Xinjiang)	3.3	Endemic economic species	7	222
		9	FGR conservation bank of northern north-subtropics (Jingshan, Hubei)	56.7	Endemic species, rare and endangered species	24	10,023
Ex Situ	Multi opening	10	FGR conservation bank of eastern north-sub-tropics (Nanjing and Xuzhou of Jiangsu Province)	15.8	Afforestation species in Plains like <i>Populus, Salix, Ginkgo biloba</i> etc.	12	2,450
Conservation	Multi-species	11	FGR conservation bank of southern north-subtropics (Hunan)	8.3	Endemic, exotic, economic species,	15	858
Banks	CONECTION	12	FGR conservation bank of eastern middle-subtropics (Zhejiang)	9.2	Economic and rare species	12	8,208
		13	FGR conservation bank of western middle-subtropics (Sichuan)	26.2	Major afforestation and rare species	26	8,000
		14	FGR conservation bank of south subtropics (Guangxi)	20.1	Major afforestation, rare and exotic species	18	1,089
	1	15	FGR conservation bank of subtropics (Jiangxi)	46.8	Endemic indigenous tree species, rare and endangered species	26	2,000
		16	FGR conservation bank of tropics (including south subtropics) (Guangxi)	23.9	Rare species	16	1,300
		17	FGR conservation bank of exotic trees (CAF, Beijing)		Exotic species	12	1,100
		18	FGR Conservation bank of flower plants (CAF, Beijing)		Landscape tree species, woody flowers	46	3,170
		19	FGR Conservation bank of evergreen broad-leaved tree species of middle subtropics (Zhejiang)	12.0	Endemic species	22	1,788
		20	FGR conservation bank of endemic tropical tree species (Guangdong, Hainan)	19.0	Tropical endemic species	30	2,444

Table 3-2: System of Ex situ FGR Conservation in China

		21	FGR conservation bank of economic tree species of southwest China (Yunnan)		23.0	Economic species	18	2,858
		22	FGR conservation bank of Bamboo and rattan (Anhui, Hainan)			Bamboo, rattan	15	582
				Total	420.6			60,145
		1	National FGR conservati	on bank of Castanea mollissima		Castanea mollissima		
		2	National FGR conservati	on bank of <i>Populus</i> (Jiangsu)		Populus		
		3	National FGR conservati	on bank of Camellia japonica		Pinus sylvestris L. var. mongolica		
		4	National FGR conservati	on bank of <i>Camellia japonica</i> g		Camellia japonica		
		5	National FGR conservati	on bank of Bamboo		Bamboo		
		6	National FGR conservati	on bank of Cunninghamia lanceolata		Cunninghamia lanceolata		
	Single-species Collection	7	National FGR conservati	on bank of Pinus massoniana		Pinus massoniana		
		8	National FGR conservati	on bank of Camellia oleifera		Camellia oleifera		
		9	National FGR conservati	on bank of Populus (Hunan)		Populus		
		10	National FGR conservati	on bank of Alsophila spinulosa		Alsophila spinulosa		
		11	National FGR conservati	on bank of Picea asperata		Picea asperata		
		12	National FGR conservation bank of Lycium chinense			Lycium chinense		
		13	National FGR conservati	on bank of Pinus sylvestris L. var. mongolica		Pinus sylvestris L. var. mongolica		
				Seed Orchards	19,600	Other 131 national key genetically improved species		
		Gen	etically improved	Cutting Orchards	18,100	bases		
	Regional Conservation	spec	ies bases	Experimental and demonstration Forests	222,100			
				Seed stands	146,100			
		Seed collection bases		Seed collection bases of all levels	630,000			
	Display collection			160 botanical gardens and arboreta				
Facility Storage	Low-temperature sto	orage		Tree. bamboo and rattan		Indigenous tree species	20	4,107

A large quantity of FGR have been collected and conserved since the 1980s. The National FGR Platform alone has conserved 60,000 accessions of 2,116 species (Table 3-2). Among them, 7 species with the number of accessions exceeding 1,000 are *Cunninghamia lanceolata, Keteleeria fortunei, Pinus massoniana, Pinus sylvestris* L. var. *mongolica, Larix logensis, Larix kaempferi, Betula alnoides* which are all main afforestation species, and 82 species have a number of accessions between 100 and 999 (Table 3-3). Among the conserved species, 94% are indigenous and 6% are exotics. In addition, a large quantity of FGR has been conserved at various seeds and propagation materials production bases at different locations.

No of accessions	No. of species conserved		Quantity of FGR conserved		
	No. of species	%	No. of accessions	%	
>1,000	7	0.33%	17,408	35.14%	
100~999	82	3.88%	23,282	47.00%	
50~99	34	1.61%	2,299	4.64%	
10~49	123	5.82%	2,551	5.15%	
1~9	1,869	88.37%	3,996	8.07%	
Total	2,116	100%	49,536	100%	

Table 3-3: Quantity of conservation by the National FGR Platform

3.2.2 Single-species collections

Single-species collections are conservation banks established by specific projects of the SFA. These conservation banks conserve FGR of a single tree species, and act as supplements of the multi-species collections, mainly used to construct base populations for tree breeding program of the species. China has already built national FGR conservation banks of 13 species, including *Cunninghamia lanceolata, Pinus massoniana, Populus, Picea asperata, Pinus sylvestris* L. var. *mongolica, Bamboo, Castanea mollissima, Lyeium chinense, Camellia japonica, Camellia oleifera, Alsophila spinulosa* and other species (see Table 3 - 2).

3.2.3 Local (regional) collections

Local (regional) collections refer to the production bases of tree seeds and propagation materials

including the genetically improved, where breeding materials or improved propagation materials are conserved and the FGR conservation is combed with breeding. Up to now, China has established a series of production bases, 630,000 ha for seed collections and 409,100 ha for improved materials, among which 131 locations (161 stands in total) are the national priority bases for improved materials. A total of 44 species such as *Cunninghamia lanceolata, Pinus massoniana, Pinus tabulaeformis*, genus *Larix* for timber and other species (genera) for non-timber uses (Figure 3-1). The Southwest Conservation Bank of Plant Germplasm Resources built in Kunming, Yunnan province, conserved a large number of FGR.

Figure 3-1: Species and total number of stands conserved in the national priority bases for improved reproduction materials

3.2.4 Display collections

Display collections include botanical gardens and arboreta used to display collection of species, to carry out relevant researches and dissemination of scientific knowledge, at the same time they also play the role of collecting and conserving FGR as the local (regional) collections. More than 160 botanical gardens and arboreta have been established mostly in the eastern and central regions of China. These display collections are conserving a large number of species, and about 20,000 species of higher plants have been introduced and conserved in Botanical Gardens of Chinese Academy of Sciences. Although the Botanical Gardens and Arboreta are conserving a large number of species is small. The focus of

display collections is on inter-species diversity, and the function of conserving Intra-species diversity is limited.

3.2.5 Low-temperature storage facility

Although China currently has not yet established a national low-temperature storage facility for FGR conservation, but some of provinces (regions) have established small-scale low-temperature storage facilities, with relatively less advanced equipments. In 2001, the Forestry Research Institute of the CAF built a small-scale low-temperature storage with a storage capacity bank of 30 m² and temperature range of 0-5°C, conserving seeds of *Picea asperata, Pinus bungeana, Pinus massoniana, Pinus tabulaeformis, Gleditsia sinensis, Sophora japonica, Melia azedarach, Prunus mandshurica, Caragana korshinskii* and others. In 2011, a low-temperature storage facility for Bamboo genetic resources was built in Huangshan, Anhui Province by the Center for Bamboo and Rattan, with a storage capacity of 112 m² and temperatures of -20 °C and 4 °C respectively.

3.3 Techniques of *ex situ* conservation

Techniques of *ex situ* conservation mainly refer to technical measures related to the construction of conservation forest. As for the conservation techniques of the cryopreservation and ultra-dry conservation facilities, only few pilot studies have been carried out with no practical applications. Techniques in constructing *ex situ* conservation forest mainly include the evaluation and selection of target species for conservation, the determination of sample size, and the configuration of the conservation stands.

3.3.1 Priority setting for *ex situ* conservation

For the species conserved in the multi-species collections, the priority for conservation is determined by the level of threatening, the value of utilization, the richness of genetic diversity and representativeness of the target species. The priority of conservation for the species in the

single-species collections and the local (regional) collections is determined by the economic value, the scope of distribution and the scale of cultivation. The priority for those in the display collections is determined by the values of research, dissemination of scientific knowledge and landscaping.

3.3.2 Models of *ex situ* conservation

Ex situ conservation can be carried out in different models according to the principle of combining conservation, evaluation and utilization together: 1) Conservation of large population for species with wide distribution and results obtained from provenance trails; 2) Conservation of population combining conservation, evaluation and utilization purposes for species with a moderate range of distribution and no provenance trials; 3) Conservation of population with family configuration for seed orchard trees which were not the selected plus trees or have not been provenance tested; 4) Conservation of population of small samples (provenances) for species with no provenance trials and successfully introduced important exotic tree species; 5) For those tested superior families, breeding population with family configuration can be constructed as conservation population; 6) Conservation of families as reproduction population for those tested families to be used for establishing seedling seed orchards or seed stands; 8) Conservation of plus trees, clones for all types of genotype conservation; 9) Conservation of reconstructed populations for endangered species, scattered species or threatened populations; 10) Conservation of composite populations for shrub species with no studies in breeding.

3.3.3 Sampling strategies on *ex situ* conservation

Sample size was determined according to the range of distribution of the target species. 5-7 populations were conserved for species with less than 200,000 ha of distribution; 7-9 populations for species with 200,000 to 500,000 ha of distribution; 9~13 populations for species with 500,000 to 800,000 ha of distribution; 13~17 populations for species with more than 800,000 ha of distribution. 27-33 individual trees were conserved for families within populations; 23-30 individual

trees were conserved for individuals within families planted in family plots with multiple replications; 3-5 ramets per site were conserved for clones.

3.3.4 Utilization of conserved FGR

Sharing and utilization of FGR conserved *ex situ* were carried out in the following ways: collaborative researches, exchanges, distribution and allocation by administrative permit, and trading, for example, the propagation material produced by local (regional) collections were distributed or allocated to production institutions for propagation and utilization, and the National FGR Platform started to provide actual FGR to the public since 2008, including sharing for public welfare, sharing as exchanges, sharing through trading, sharing as administrative permit, sharing through collaborative research. These have changed the traditional way of sharing conserved FGR as internal sharing through inter-agency joint conservation and exchange of FGR. Up to 2010, more than 5,000 accessions of FGR have been provided to domestic research institutions, enterprises and individuals.

3.4 Collection and conservation approaches

- Collection and conservation by genetic improvement research projects. Genetic improvement have been carried out for more than 100 tree species, including *Cunninghamia lanceolata*, *Pinus, Larix, Populus, Salix, Paulownia, Juglans regia, Castanea mollissima, Camellia oleifera, Phyllostachys pubescens* and many others. A large number of provenances, plus tree, families, clones and varieties have been conserved in the process of genetically improvement,
- 2) Collection and conservation by FGR research projects. Since the 1980s, China started researches on the collection and conservation of FGR and established the national cooperative network to carry out the construction of conservation banks. Up to now, 22 FGR conservation banks have been established in different climate zones of China, which conserves populations (provenances), families and individuals (clones) of indigenous species,

mainly including species (genera) such as *Cunninghamia lanceolata*, *Pinus massoniana*, *Pinus sylvestris var. mongolica*, *Pinus bungeana*, *Pinus tabulaeformis*, *Picea asperata*, *Larix*, *Populus*, *Salix*, *Juglans mandshurica*, *Liriodendron chinense*, *Alnus cremastogyne*, *Ginkgo biloba*, *Melia azedarach*, *Castanopsis hystrix*, *Gleditsia sinensis* etc.

- 3) Collection and conservation by seed and seedling production programs as well as for FGR conservation programs. In recent years, China has built a number of national priority production bases of genetically improved trees and national level FGR conservation banks. In 2009, the SFA approved 131 national priority production bases of genetically improved trees and 13 national FGR conservation banks. China also implemented a number of FGR conservation projects such as the "Tropical FGR Conservation Bank Project", the "Subtropical FGR Conservation Bank Project", which collected and conserved a large number of indigenous tree species such as *Bamboo, Schima superba, Camellia oleifera, Lycium chinensis, Castanea mollissima, Camellia japonica* and many others.
- 4) Collection and conservation by research projects in introduction of exotic tree species. China has introduced *Eucalyptus*, *Acacia*, *Pinus elliotii*, *Pinus taeda*, *Pinus caribaea*, *Populus*, *Tectona grandis*, *Casuarina equisetifolia* and other tree species. The research projects have collected and conserved FGR such as provenances, varieties, clones during the process of introduction and cultivation.
- 5) Collection and conservation by Botanical Gardens (Arboreta). Over 160 Botanical Gardens and Arboreta have been established throughout China, which systematically collected and conserved a large number of FGR with species as the conservation unit.

3.5 Documentation and information system

Since 2004, the "National FGR Platform" developed more than 20 FGR related technical standards, including description standards, codes and criteria. The standards constituted a unified

system of FGR classification, documentation and description. Some of the standards have already become the national standards or forestry sector standards. The contents of documentation and digitalized description mainly include passport information, and other information on basic characteristics, conservation institution, sharing approaches, characterization and descriptions. The National FGR Platform also provides information sharing and services through its web portal (www.nfgrp.cn).

3.6 Major problems, needs and priorities for future work

3.6.1 Major problems and needs

- Ex situ conservation is a long-term basic and systematic work involving collection, conservation, research, information processing and other aspects of FGR, and there is an urgent need to strengthen capacity building by establishing a stable personnel team with improved overall abilities.
- 2) Techniques for long-term, safe and efficient conservation, and monitoring, evaluation and utilization of *ex situ* conservation and low-temperature storages still need to be improved. It is urgently needed to establish a national cooperative for FGR conservation, evaluation and utilization, to strengthen the coordinating and management, and to develop a complete system of technical standards. It is also needed to establish a stable and long-term mechanism of financial input, and to build national low-temperature storage and supporting facilities.
- 3) The technologies for *ex situ* conservation and low-temperature storage facilities are relatively legged behind. It is needed to carry out researches on related theories and technologies, to maintain genetic diversity of *ex situ* conservation forest, and to extend the viability and germination rate of seeds conserved in facility storages.

3.6.2 Priorities for future work

1) Improving the system of *ex situ* conservation. Through implementation of the "National FGR Platform", the development of production bases of seeds and seedlings and the special

investment projects to improve multi-species collections, single-species collections, local/regional collections and low temperature storages.

- 2) Carrying out in-depth studies in monitoring and evaluating of genetic diversity in *ex situ* conservation forests, monitoring and maintaining the seed vigor in low-temperature storages and applications of geographic information systems, developing and revising technical standards for *ex situ* FGR conservation and improving the efficiencies of management, decision-making, scientific research and safe conservation.
- 3) Improving the information system of the National FGR Platform; increasing information and actual FGR sharing; further strengthening documentation and integration of FGR; improving the efficiency of utilizing FGR conserved *ex situ* and promoting sharing of information and actual FGR.

Chapter 4 The state of utilization and sustainable management of FGR

FGR is renewable and an important part of biodiversity resources, and the basic material for the forest tree breeding researches. Science-based and rational management and utilization of FGR have significant implications in safeguarding sustainable development of agriculture and forestry production, promoting ecological stability, breeding new varieties, poverty alleviation and guaranteeing of food security.

4.1 Management and utilization of conserved FGR

4.1.1 Utilization

The ultimate goal of FGR conservation is to utilize these resources, and to bring economic, ecological and social benefits for the socio-economic development. Especially the research and development of vegetative propagation techniques, have led to the solution of the bottlenecks of propagation difficulties and small population sizes of some species. Research of propagation techniques and utilization of FGR have been carried out for more than 100 major rare and endangered species, including *Liriodendron chinense, Taxus chinensis, Davidia involacratu, Cercidiphyllum japonicum, Lindera flavinervia, Abies beshanzuensis, Cathaya argyrophylla etc.* Breakthroughs in propagation techniques have led to continual expansion of population size of endangered species, direct provision of plant materials needed for exploitation and utilization, therefore to relieve the pressures on natural resources and promote the protection and conservation of FGR of endangered tree species.

For FGR with important economic value and superior characteristics including certificated genetically improved trees, new varieties and local varieties, and superior propagation materials, production bases (seed stands, seed orchards, cutting orchards, experimental and demonstration forests) were established to produce improved seeds and propagation material, thus to achieve extended utilization of the resources. Up to 2010, China has established production bases of

improved trees of 409,100 ha in total, among which 19,600 ha were seed orchard, 18,100 ha were cutting orchard, 222,100 ha were various experimental and demonstration forests, 146,100 ha were seed stands; China has also establishment seed collection bases of 630,000 ha; and 336,000 nurseries with a total area of 688,000 ha (Table 4-1).

From 2001 to 2010, the average annual harvested tree seeds in China amounted to 23.51 million kg, annual number of cuttings produced from cutting orchards and clonal propagation nurseries averaged at 635 million and 1.2 billion respectively, and 13.5 billion of various vigorous plant stocks (Table 4-2). These resources are mainly used for growing short-rotation fast growing and high yielding industrial plantations, economic forests, pulpwood plantations, special purposed forests and other afforestation projects. The average growth gain of improved timber trees was more than 10%, and the average yield gain of improved economic trees was more than 15%.

Utilization Methods		Number	Area (ha)	Materials of genetically improved trees		
Total			2,133,000			
Production bases of improved trees	Seed orchards		19,600 Progeny tested superior families, selected plus trees and introduce superior families.			
	Cutting orchards		18,100	Bred and introduced superior varieties and clones of <i>Juglans regia</i> , <i>Ziziphus jujuba</i> , <i>Populus tomentosa</i> , <i>Ginkgo biloba</i> , <i>Castanea mollissima</i> .		
	Seed stands		146,100Superior stands of Pinus, Larix, Cunninghamia lanceolata, Betula platyphylla.			
	Experimental & pilot forests		222,100	Experiments and demonstrations of timber, economic and preciou tree species.		
Total of above		751 (2007)	409,100	Superior provenances of Larix, Pinus, Platycladus orientalis, Picea asperata, Juniperus rigida, Eucalyptus, Robinia pseudoacacia, Cunninghamia lanceolata.		
Seed collection bases		663 (2007)	630,000	Superior provenances of Pinus, Cunninghamia lanceolata, Larix, Eucalyptus, Platycladus orientalis, Picea asperata, Pinus bungeana, Juniperus rigida, Robinia pseudoacacia.		
Various nurs	us nurseries 336,000 (2010) 688,000		688,000	Superior provenances of Pinus, Larix, Cunninghamia lanceolata, Eucalyptus, Platycladus orientalis, Picea asperata, Juniperus rigida, Robinia pseudoacacia.		

Table 4-1, Exploitation and Utilization of Genetically Improved Trees

Data Sources: China's Forestry Statistical Yearbook

	Soods by sood	Production base	Yield of			
Year	collection bases (million kg)	Seed by seed orchards (kg)	Seed by seed stands (million kg)	Cuttings by cutting orchards (billion)	Cuttings by clonal propagation nurseries (billion)	strong seedlings (billion plants)
2010	6,46	620,000	1,29	1.19	0.66	13,1
2009	5,91	790,000	1,78	0.77	0.55	12,5
2008	9,62	990,000	2,28	0.61	0.38	12,5
2007	12,12	360,000	1,66	0.25	0.83	13,3
2006	10,29	360,000	1,33	0.3	1.5	12,4
2005	11,86	530,000	2,05	0.2	1.8	13,9
2004	11,25	360,000	1,54	0.4	2.4	13,5
2003	9,48	1,560,000	1,99	1.4	0.3	16,8
2002	8,49	1,038,000	1,292	1.2	3.5	
2001	7,58	477,000	1,47	0.027	0.84	
Average	9,306	708,500	1,6682	0.635	1.2	13,5

Table 4-2, Yield of improved seeds and propagation materials in recent 10 years

Data Sources: China's Forestry Statistical Yearbook

4.1.2 Restraining factors

For the utilization of the conserved FGR, major restraining factors include:

- Long production cycle and high cost. The cost of producing seeds or scions/cuttings of the conserved FGR (including genetically improved trees) was high, the high cost led to reduced demand.
- 2) Insufficient supply of superior FGR. Under developed propagation techniques and simple propagation facilities led to quality and quantity of superior trees insufficient to meet the need by large-scale extension and utilization. Huge benefits can be gained from exploitation and utilization of some rare tree species with high economic values, however, due to the very limited resources, poor propagation techniques or small production scale, the demand by exploitation and utilization thus cannot be met.
- 3) A benefit-sharing mechanism needs to be established and improved. The lack of policies and regulations for protection of intellectual properties related to genetic resources, and the lack of

effective mechanisms of sharing responsibilities, rights and interests between suppliers and users of the genetic resources, have led to that the suppliers cannot benefit from the exploitation and utilization of the genetic resources whereas the users cannot get use right of the genetic resources.

4.2 Breeding and genetic improvement

Since the 1980s, China carried out systematical genetic improvement researches on the main afforestation tree species, and provenance trials and genetic improvement studies have been conducted for over 100 species, including coniferous or broadleaved timber species of *Cunninghamia lanceolata, Pinus, Larix, Populus and Salix,* ornamental species of *Liriodendron chinense, Magnolia denudata,* woody food and oil-yielding species of *Juglans regia, Camellia oleifera,* protection species of *Hippophae rhamnoides, Caragana Korshinskii, Haloxylon ammodendron,* biomass energy species of *Vernicia fordii* and *Jatropha curcas,* and Bamboo and Rattan. (Appendix table 13). Also studies of introduction and domestication of important exotic trees species have been carried out, successful exotic tree species include *Eucalyptus,* exotic Pines and Acacias, largely enriched the number of timber and afforestation tree species in China.

4.2.1 Breeding techniques

Selection of provenances, families and plus trees: China has carried out plus tree selection, provenance trials, progeny tests or clonal tests for more than 70 important afforestation tree species, such as *Cunninghamia lanceolata, Pinus massoniana, Pinus tabulaeformis, Pinus koraiensis, Larix gmelinii, Pinus caribaea, Betula platyphylla, Liriodendron chinense*, a large number of improved provenances, families and individuals were selected, laying a solid foundation for genetic improvement of these species (Appendix table 14). For example, three times of large-scale provenance trails were carried out for *Cunninghamia lanceolata*, involving more than 200 provenances. The "Standards for nationwide zoning *Cunninghamia lanceolata*" based on results from the provenance trials; 9 provenance regions were identified for

Cunninghamia lanceolata, a number of superior provenances of high and stable yield were obtained with an average genetic gain of 16% for the volume. A range wide provenance trial was established *for Pinus massoniana* involving 28 trial sites and 142 provenances, provenance regions (3 zones and 6 regions) were identified based on results from the provenance trial, a number superior provenances were selected and used in afforestation nationwide, with a volume gain of more than 15%.

Cross-breeding: China launched a systematic, planned crossbreeding program, in which a large number of Inter-species or Intra-species hybridization experiments have been conducted for species of *Populus*, *Salix*, *Pinus*, *Larix*, *Liriodendron*, *Taxodium ascendens*, *Cryptomeria fortunei*, *Taxodium distichum* and other species (genus), a large number of superior hybrid progenies, including hybrid *Populus*, hybrid *Salix*, hybrid *Pinus* and hybrid *Liriodendron*, hybrid of *Taxodium mucronatum* × *Cryptomeria fortunei*, *Taxodium* 'zhongshansha 302' were developed; with obvious hybrid vigor. For example, the hybrid *Liriodendron* has a faster growth and a stronger resistance than the parents.

Clonal Selection: China has undertaken researches of techniques for clonal selection for important afforestation tree species, economic tree species and ornamental gardening tree species; and carried out large-scale researches of clonal development for trees of *Populus, Salix, Cunninghamia lanceolata, Eucalyptus, Robinia pseudoacacia, Ulmus pumila, Larix, Liriodendron chinense, Hippophae rhamnoides, Sophora japonica, Ginkgo biloba.* A number of superior clones, such as the Triploid series of *Populus tomentosa* and superior clonal series of *Cunninghamia lanceolata, Pinus massoniana, Populus tomentosa* etc. have been established at multiple sites in order to promote the extended use of the superior clones. Clonal plantations have been established, making a great contribution to the development of industrial timber forest.

Biotechnology: Regarding researches in Cell Engineering, somatic embryogenesis, screening of mutants of salt-tolerant somatic cells have been carried out for trees of *Populus, Liriodendron chinense, Larix, Acacia mearnsii*, among which the somatic embryogenesis technology has

already applied in the large-scale production of *Liriodendron chinense*. Suspension cell lines of *Populus popularis* '39' were developed. Salt-tolerant somatic cell variant plants of *Populus popularis* '39' were obtained, and field trials and molecular detection were started. Regarding genetic engineering, regenerated plants of *Populus alba* \times *P. glandulosa* was obtained with transformation of insect resistant gene (*Cry 3A*) into the genome through *Agrobacterium tumefaciens* mediation method. Transgenic plants of hybrid poplar of *Populus simonii* \times *P. nigra* were obtained by transforming exogenous gene *Bet2A* through *Agrobacterium tumefaciens* mediation method using the sterilized leaf segments as transformation receptor material. Besides, researches were also carried out in lignin improvement, transformation of stress-resistant genes and nitrogen fixation genes, genetic mapping. Progress has been made in simultaneous transformation of multiple genes in poplar trees.

4.2.2 Seed orchard development

Up to 2010, China has established a variety of seed orchards with a total area of 19,600 ha, among which the seed orchards of *Pinus sylvestris* var. *mongolica*, *Larix gmelini* have larger areas than other species. Based on progeny tests, most primary seed orchards established earlier have gone through thinning or converted into a 1.5 generation seed orchards, and some 2nd generation seed orchards were constructed using selected progenies. In Fujian, third generation seed orchards of *Cunninghamia lanceolata* have been established or are going to be established. In Heilongjiang, greenhouse seed orchards of *Betula platyphylla* have been established (Appendix table 15).

4.3 Utilization, management and trade of propagation material

4.3.1 Management and extension of improved trees

The former Ministry of Forestry issued the "Management rules for the use of genetically improved forest trees" in 1997, and implemented the system of certification of improved forest trees. Up to

2009, a total of 2,776 genetically improved varieties were certificated in China. Based on the management rules, through expanded propagation, experiments, demonstrations, training, instruction and consultation services etc., the certified superior trees including superior provenances, families, clones and local varieties have been widely used in various afforestation projects and achieved remarkable effects. Improved trees and superior FGR have been actively applied in national afforestation projects, and until 2010, the extent of using improved planting materials has been significantly increased.

4.3.2 International trade of propagation materials

Institutions of tree seed and seedling operations, forestry research institutions, universities and colleges, urban construction and gardening agencies are involved in activities of international exchange of tree seeds and vegetative materials. China annually imports more than 150,000 kg of seeds and several 100,000 seedlings of over 50 tree species, mainly including *Cedrus deodara, Pinus caribaea, Liriodendron chinense, Eucalyptus, Acacia,* etc. (Appendix table 12). China has already established cooperative relations with over 100 enterprises of tree seeds and seedlings and non-profit organizations of more than 30 countries in Europe, America, Asia, China has an annual export of over 400 species with more than 300,000 kg of tree seeds, several hundreds of thousands of seedlings, including *Ginkgo biloba, Sophora japonica, Larix gmelinii, Pinus bungeana* (Appendix table 12).

4.3.3 Commercial applications of genetically improved trees

At present, various genetically improved forest tree species have been commercially used in different degrees. Superior varieties with relatively large-scale commercial applications include Hunan series of *Camellia oleifera*, triploid *Populus tomentosa*, *Taxodium* x *zhongshansha*, *Sophora japonica* 'Golden leaf', *Pinus massoniana* 'Tongmian' (Appendix table 16). China requires that the major national forestry programs must use the genetically improved plant materials for their afforestation activities to promote the commercial application of genetically improved trees.

But some of the genetically improved materials are restricted due to the high cost of utilization, or the narrow geographical areas suitable for application.

4.4 Major problems, needs and priorities for future work

4.4.1 Major problems and needs

- 1) The yield of existing seed orchards and seed stands cannot meet the demands by practical application. Most seed orchards and seed stands are still in the first generation, genetic quality of seeds is not very high, and the extent of practical uses of improved seeds was not high. There is a need to expand the scale of the production bases of genetically improved seeds, to improve the yield and quality of the seed orchards and seed stands, and to increase the uses of genetically improved seeds.
- 2) The lack of diversity in breeding objectives, the lack of continuity for research projects in breeding, and the lack of effective incentive mechanisms in transformation of research results resulted in difficulties in fully mobilizing the enthusiasms of breeders, seed producers and users. There is a need to create a long-term multi-objective breeding mechanism, to formulate incentive policies of encouraging tripartite participation in the utilization and management of the genetically improved seeds.
- 3) In China, the systems of breeding and extension, production and supply, law enforcement and socialized services in relation to improved tree seeds are imperfect, and improvements are needed to make the breeding and extension, production and supply, law enforcement and socialized services more effective.

4.4.2 Priorities for future development

 To expand the size of production bases of genetically improved seeds; to improve the genetic quality of seeds; and take measures to increase the yield of seed orchards and seed stands. To strengthen the effective use of modern breeding technologies in conventional tree breeding; to create new genetic materials and improve the quantity and quality of improved materials.

- 2) Strengthen sustainable management and utilization of FGR; improve the extent of using improved seeds, support the innovation and development of seed enterprises, and encourage the investment of individuals and enterprises in genetic improvement of trees, in order to promote the formation of an effective community with common interests among tree breeders, producers and users of the genetically improved seeds.
- Develop relevant policies to establish and perfect the systems of breeding and extension, production and supply, law enforcement and socialized services of genetically improved forest tree seeds.

Chapter 5 The state of national plan, research, education, training and legislation

Since 2000, China has formulated a series of national plans concerning FGR conservation and management, and carried out activities relevant to research, education, training and legislation, which have promoted FGR protection and management.

5.1 Nation plans and programs

In the last decade, China has promulgated and implemented a series of planning and programming related to the protection of FGR, mainly "Plans for the natural forest protection program (2000-2010) (2011-2020)", "Plan for the National Wildlife Protection and Nature Reserve Development Program (2001-2050)", "Plan for the National Wetland Protection Program (2002-2030)", "Medium- and Long-term Plan for Forestry Science and Technology Development (2006-2020)". These plans have incorporated FGR protection into national action plans from the ban on logging of natural forest to the establishment and the protection of nature reserves of key species and typical ecosystems with national priority for protection. In 2004, China promulgated the "Outlines for 2004-2010 Development of National Science and Technology Infrastructure Platform". In 2007, "the Outlines for Protection and Utilization of National Biological Species Resources" was released and in 2010, published "China Biodiversity Conservation Strategy and action plan (2011 -2030)". All these national programs and plans have taken FGR conservation and utilization as priority area or theme, and set up special projects of FGR research in the national science and technology support program, the basic work plan for national science and technology, the SFA key science and technology program, the special public welfare program of forestry sector, and have made significant achievements.

The SFA has developed some technical standards and regulations like "Technical codes for FGR survey", the "Rules for FGR management", organized and implemented national FGR inventory. Up to 2010, more than 10 provinces or autonomous regions completed the work of FGR inventory. It was intended to complete the FGR inventory in all provinces by 2015. In the past 10 years, the

SFA carried out the national wildlife resources survey, identified over 160 rare and endangered species and their abundance and distribution (Appendix table 10), the survey found 1 200 threatened and endangered species, endangered populations were fond for about 70% of the tree species surveyed, revealing an urgent need to strengthen FGR protection.

5.2 Research

Under the leadership of the SFA, research institutes, universities, production and management institutions have carried out collaborative FGR research and conservation (Appendix table 17).

Currently, China has 240 forestry research institutions and technology development organizations, engaged in research and development of FGR. Forestry research institutions have been well developed from central to local level. CAF is the earliest research institution carrying out FGR researches; it has established a cooperative relationship with 66 institutions of research, education and management of 25 provinces or municipalities, to carry out studies on collection, evaluation, conservation and sustainable utilization of FGR.

China has set up a number of special research projects to conduct studies on survey, collection, conservation, evaluation and utilization of FGR. In the past 10 years, China has carried out several key cooperative research projects, such as "Standardization of FGR documentation, integration and sharing", "Surveys on FGR in China", "Exploitation and innovative use of gene resources of trees and flower plants", cataloging and documenting FGR, setting up and networking FGR conservation banks, assessing FGR genetic diversity, exploring and utilizing FGR and developing information platform, and providing sharing services of FGR information in relation with actual FGR. On the basis of these research projects, with financial support from the government, the National FGR Platform has been established, engaged in FGR collection, conservation, documentation, evaluation and sharing services.

53

5.3 Education and training

Currently, China has 5 forestry universities, i.e. Beijing Forestry University, Nanjing Forestry University, Northeast Forestry University, Central South Forestry University of Science and Technology, Southwest Forestry University, and 200 various types of universities, colleges and technical schools that have forestry-related disciplines, among which a number of disciplines are related to FGR. In addition, the CAF, Beijing Forestry University and other research institutions and universities carried out FGR related graduate education. At present, FGR has not been set as an independent discipline in higher and secondary education on forestry, only few universities have taken FGR as a thesis subject for their postgraduate students, course studies on FGR have been evidently insufficient.

Since 2000, the SFA, the provincial forestry authorities and the CAF have organized a number of FGR training workshops at different scales. The SFA has organized regular national and regional training courses across the country, providing training to a large number of people working on FGR. In order to standardize the FGR surveys to be carried out by different provinces, each province also conducted provincial training courses. In 2008, Inner Mongolia Autonomous Region has trained more than 100 technical staff on FGR survey. In 2010 the CAF launched a series of national training workshops on FGR, administrative and technical staffs from over 10 provinces participated in the training. By various types of training and dissemination of relevant laws, regulations and policies, the understanding of the FGR importance by relevant staffs have been improved, strongly promoting the protection and utilization of FGR.

5.4 Laws and regulations

The FGR related Laws, regulations and rules in China mainly include the "Forest Law of the People's Republic of China", the "Seed Law of the People's Republic of China", the "Regulations on Wildlife Plants", the "Regulations on Nature Reserves", the "Regulations on New Plant Varieties Protection", the "Patent Law of the People's Republic of China", the "Regulations on Management of Import and Export of Endangered Wildlife", the "Law of Animal and Plant
Quarantine for Entry to and Exit from China", the "Regulations on Forest Pests and Diseases Prevention and Control", these laws and regulations provided clearly specifications on activities of FGR collection, conservation, utilization, import and export.

The SFA also promulgated regulations related to production and management of forest tree seeds and plant stocks, including the "Rules for quality control of forest tree seeds", "Rules for extension and application of genetically improved tree seeds and other reproduction materials", and the "Rules for FGR management". These regulations and rules have standardized the collection, conservation, breeding and other aspects of FGR, and provided important basis for FGR management.

5.5 Administration

China's forestry sector has a complete administration system, the SFA was set in the central government, and the SFA is the competent authority FGR, involving a number of departments (bureaus) and units of the SFA (Appendix table 17). Each province (Region or municipality) has a forestry department (bureau), forestry administration is also set in prefecture (municipality or county) governments, township (village) government has a forestry station responsible for FGR management, therefore forming a well structured 4-level administrative network, from central, provincial (autonomous regions and municipalities), prefectural (county), and township (village) governments.

In order to strengthen the management of FGR, the SFA set up a Leading Group on Protecting Resources of Biological Species in forestry sector in 2003, and the Office of the leading group was set up in the Science and Technology Development Center of the SFA, responsible for the coordination of protection and management of the resources of biological species in forestry sector. The Science and Technology Development Center is responsible for the implementation of the forestry component of the ABS Protocol of CBD and the Bio-safety Protocol.

The General Service of State-owned Forest Farm and Forest Tree Seed and Seedling of the SFA is responsible for the management of FGR collection, documentation, assessment, registration, conservation, exchange, utilization, conservation bases and facilities construction, and certification of improved varieties and propagation materials. The Department of Wildlife Protection and Nature Reserve Management of the SFA is responsible for the management of wildlife protection and nature reserves and the approval of import and export of wildlife. The China Office of Import and Export Management of Endangered Species, is responsible for issuing import or export permit in accordance with CITES convention and the relevant laws and regulations.

5.6 Public awareness and information dissemination

In the past 10 years, with extensive development of various educations on forest ecology, public awareness on forest protection is increased continuously; the public awareness on FGR is gradually improving.

FGR data and information have been gathered and disseminated through several key websites of the SFA (www.forestry.gov.cn), the National FGR Platform (www.nfgrp.cn), the General Service of State-Owned Forest Farm and Tree Seed and Seedling (www.sinoseed.com), Chinese Nature Reserves(www.nre.com.cn), and other professional websites and portal of relevant government agencies, significantly improving the efficiency of dissemination of FGR information.

5.7 The main problems, needs and future priorities

5.7.1 The main problems and needs

- Currently, there is no specific law on genetic resources, and FGR related policies are imperfect, management tools are lagging behind. A specific law on genetic resources is needed, and other FGR related regulations need to be improved.
- 2) China has a vast territory, with rich FGR and high genetic diversity, there is an urgent need for

specialized FGR research and development institution to coordinate nationwide FGR collection, conservation and utilization for research use, provide technical support to government departments to formulate relevant policies.

3) Lack of sustained and stable financial support to FGR researches, the weakness of staffing and capacity in FGR need to be strengthened through the FGR education, research and training.

5.7.2 Priorities for future work

- 1) Develop FGR protection and management regulations, fill up the regulatory gaps, and promote FGR management in accordance with the law.
- 2) Strengthen FGR research and discipline development, improve and enrich the theoretical and technical systems, and establish long-term stable funding support mechanisms.
- 3) Strengthen public education by using network, television, newspapers and other media to carry out public education on FGR, enhance public awareness of FGR protection.

Chapter 6 The state of regional and international cooperation

International forestry cooperation and exchange developed rapidly, China has established good relationships and cooperates with more than 40 countries and more than 20 international organizations around the world, the regional and international cooperation in FGR also developed rapidly. Participation in international networks, bilateral or multilateral cooperation, and implementation of international conventions is the main form of regional and international cooperation.

6.1 International institutions and networks

International institutions and networks refer to the participation by a number of countries, institutions and other global or regional cooperation and exchange network. China has participated in nearly 20 international institutions or networks such as FAO, IUFRO and UPOV that are related to FGR. Activities such as information exchange, database development, formulation of conservation strategy and seed exchange have promoted exchanges and sharing of FGR information, improvement of technical standards and upgrading international status (Appendix table 20, 21). International cooperation and exchanges have focused on more than 40 species, e.g. *Camellia oleifera*, *Tecona grandis*, *Betula alnoides* and *Melia azedarach* etc.

INBAR is the first intergovernmental organization which set its headquarters in China, it organizes and coordinates the development and utilization of genetic resources of bamboo and rattan, bring benefits to many countries, including various forms of benefits such as genetic resources and related information of bamboo and rattan, cultivation techniques and methods of application, technology transfer and exchange, personnel training.

6.2 International cooperation projects

In the past 10 years, about 100 international projects in forestry were supported, with a funding of

about \$ 374 684 900, including post-disaster reconstruction, vegetation recovery, ecological forestation, sand control and afforestation, the number of projects and the funds in these fields accounted for 48% and 61% respectively of the total, and the number of projects and funding in fields of sustainable forest management and development accounted for 34% and 37%, the number of funding in FGR protection, conservation, collection, evaluation and utilization were relatively small, accounted for 17% and 2% (Figure 6-1, 6-2).

Figure 6-2 Changes of funding of international aid projects between 2000 and 2010

The international cooperation projects promoted FGR protection, conservation and utilization, mainly reflected in: 1) Strengthened sharing of actual material and information of FGR, and promoted the genetics and breeding of forest trees, development of new plant varieties and their

experiment, demonstration and extension in China, and enriched FGR diversity; 2) Promoted the protection of rare and endangered species and development and utilization of wild native tree species; 3) Introduced advanced foreign technologies, improved research and management capabilities and trained technical staff; 4) Accelerated regional economic development, alleviated poverty, improved public awareness of FGR conservation. For example, the *Taxus* conservation projects funded by the WWF in 2004 strengthened the protection of *Taxus* FGR, through compiling the Red Book for *Taxus* protection, making television dissemination video etc. (Table 6-1).

DA	Project name	The main achievements			
ACIAR	China-Australia cooperative research on growth of <i>Eucalyptus</i>	174 species/provenances and 1666 families were introduced, enriching genetic diversity; Vegetative propagation techniques were studied, a rational model of fertilization for <i>Eucalyptus</i> plantations was proposed to promote tree growth, reduce soil degradation, increasing economic benefits.	CAF		
ACIAR	Assessment of Ecological Restoration by growing <i>Pinus radiata</i> in Aba, Sichuan Province	Introduction and Assessment of <i>Pinus radiata</i> in Aba, Sichuan Province. Enrich the diversity of species in Aba arid valley, Sichuan.	CAF, SPAF, SPBF		
WWF	CamelliaIuteofloraprotectioninGuizhouChishuiAlsophilaprotected areas	Mapping the distribution of <i>Camellia luteoflora</i> , establishment of a protection station for effective protection of <i>Camellia</i> <i>luteoflora</i> and their habitats. Through seminars and dissemination of booklets on protection of <i>Camellia luteoflora</i> , awareness of the local people was raised.	CICEPG, NNRTCG		
WWF	Extension of the above project on <i>Camellia</i> <i>luteoflora</i> protection	Established <i>Camellia luteoflora</i> core protected areas, with a permanent signs for protection.	CICEPG, NNRTCG		
WWF	Survey of the impacts of human activities on <i>Larix</i> forest in Taibai Mountain of Shaanxi	Survey on Taibai <i>Larix</i> forest Resources and anthropogenic interference with the types, causes, etc., drew specific recommendations for protective measures.	STNNR		
WWF	Conservation of <i>Thespesia howii</i> and population restoration	The threats to <i>Thespesia howii</i> was investigated and <i>ex situ</i> conservation established. Public awareness of the species was raised through diverse forms of lectures and science dissemination.	HNU		
WWF	The protection of Parakmeria in Emei	Studies on vegetative propagation of Emei <i>Parakmeria</i> have achieved preliminary results, artificial test community and	SAUD		

Table 6-1 Information on part of the international cooperation projects

DA	Project name	The main achievements		
		conservation base were established.		
WWF	Survey and evaluation of distribution of <i>Komagari</i> catechu	The threats to <i>Komagari catechu</i> and its artificial cultivation were studied. Public awareness was significantly improved through a variety of lectures, science dissemination and education activities.	WBG of CAS	
WWF	Tourist disturbance and conservation strategies for <i>Cupressus gigantea</i>	The impacts of tourism activities on <i>Cupressus gigantean</i> was studied to know the effects on tree growth and damages to tree trunk, influences on understory vegetation and soil. Environmental education to visitors and local communities were conducted to raise public awareness.	CETDR of BJFU	
WWF	Production of TV movie on rescuing Tertiary relict plants in West Ordos and Alashan	Tertiary relict plants and their habitats were surveyed. Various activities such as delivery of plant protection calendar to farmers, media presentations, and supervisory by relevant law enforcement agencies to strengthen the protection and slow down the destruction.	SUT	
WWF	Rescue conservation andutilizationofrare,endangeredAcerpentaphyllum	Studied the endangered mechanism of five lobular maples. Conservation strategy was proposed. Small training courses were held to strengthen farmers and enterprises' environmental awareness.	CIB of CAS	
WWF	Survey and detection of Wildlife trade – <i>Taxus</i> protection project	Through documenting the state of utilization and protection of wild <i>Taxus</i> resources utilization, and making television programs on knowledge of protection of <i>Taxus</i> , providing information to relevant agencies to strengthen the protection of Taxus resources.	CEPF	
ITTO	Sustainable management and utilization of Chinese Southern bush Bamboo	400 suitable species were selected from more than 500 Bamboo species to create a Bamboo garden of 20 hm ² , for both scientific research and ornamental uses.	CAF	
ΙΤΤΟ	Afforestation technology development and demonstration projects of tropical broad-leaved species in Yunnan Province, China	Completed studies in collection, conservation, utilization and pest control of <i>Epiphyllum</i> , mountain <i>Osmanthus</i> , Yunnan <i>Parakmeria</i> and 7 other native tree species in Yunnan. Carried out the afforestation technology with tropical broad-leaved species, built the center tree nurseries of tropical broad-leaved species and the base of the genetic improvement tropical broad-leaved species like the <i>Betula alnoides</i> and mountain <i>Osmanthus</i> .	YPAF and CAF	
ITTO	Demonstrationofcultivationandsustainablemanagementof rattan in China	Studies were carried out on cultivation and sustainable utilization of rattan.	CIBR of SFA	
EIB	Build bio-energy forest demonstration project in Jiangxi	Established 30 000 <i>ha</i> of biomass energy forest demonstration base in 19 counties like Ruijin, Shicheng, Guangchang, Suichuan, built <i>Camellia</i> bases of 22 700 ha, <i>Swida</i> bases of 6	JPBF	

DA	Project name	The main achievements	IA of
			China
		700 ha.	
JICA	Chinese-Japanese technical cooperation project of forest Tree Breeding Center (Phase II)	3 Poplar varieties were developed for mountain areas, and a DNA technology for identification of Poplar varieties was developed. The range of growing Japanese Larch was moved southwards by 10 degrees of latitude, making it a main afforestation species at high altitudes in southwestern China. Non-destructive wood-strength testing technology was developed for Chinese Fir, Masson pine and Poplar. Assessment techniques for EGR of Masson pine were	HPBF
		developed. Breeding for nematode resistance of Masson pine was carried out.	

Note: DA, Donor agency; IA, Implementation agency

6.3 International convention / agreement

China joined FGR related international conventions and played an active role in promoting FGR conservation. In 1981 China joined "Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES)", Convention on "Biological Diversity" in 1993. In 1999 China became a member of the "International Convention on Protection of New Varieties of Plants" (1978 Act). In 2001, China joined the WTO, "Trade-Related Intellectual Property Rights Agreement", and "Cartagena Protocol on Bio-safety" (Table 6-2).

China signed more than 10 multilateral and bilateral agreements, for example, "Agreement the United States of America, the Department of the Interior and the People's Republic of China Ministry of Forestry on the nature conservation exchanges and cooperation Protocol"

Table 6-2 Maior	international	Conventions/F	Protocols, a	and bilateral	cooperation	agreements
	mitornational	o on a on a on a on on	1010001070		oooporation	agroomonio

related to FGR that China has signed

Name	
International conventions and protocols	
CITES	1981
UNFCCC	1992
CBD	1993
UNCCD	1994

CIIW	1992		
Kyoto Protocol	1998		
UPOV Convention (1978 version)	1999		
Cartagena Protocol on Bio-safety	2000		
Non-legally binding instruments of all types of forests (International forest	2007		
instrument)	2007		
Bilateral cooperation agreements			
Exchanges and cooperation protocol of the United States of America, the Ministry			
of the Interior and the People's Republic of China Ministry of Forestry on the	1986		
Conservation of Nature			
Memorandum of understanding on cooperation between the China SFA and the			
Italy Environment Ministry of Land and Resources on Rio conventions	2004		
coordination and sustainable development			
Memorandum of understanding on forest resources and ecological environment			
protection field between National Forestry Administration of the People's Republic			
of China and the Republic of Argentina environment and sustainable	2009		
development Secretariat of State			
Memorandum of Understanding of cooperation in the protection of forest			
biodiversity between National Forestry Administration of the People's Republic of	2005		
China and Ministry of Environment of the Federative Republic of Brazil			

6.4 Major needs and future priorities

- China is a rich country in FGR, and will strengthen international cooperation in FGR research, conservation and utilization, learning advanced technologies and experiences from foreign countries.
- 2) Carry out in-depth international cooperation. Developed countries are in a leading position in the field of biotechnology, it needs to narrow the gap through cooperation and exchange, to raise the quality level of domestic research in related areas, and promote the development and

utilization of FGR.

3) Play an active role in the regional networks. To those subjects with higher research capacity in China, such as the use of bamboo and rattan resources, China can provide assistance to the developing countries, including related technologies and training of human resources.

Chapter 7 The state of ABS

The fair and equitable sharing of benefits arising from the utilization of genetic resources is one of the three goals of the Convention on Biological Diversity. Access to genetic resources and the sharing of benefits arising from their utilization contribute to conservation and sustainable utilization of biodiversity, poverty alleviation and promoting environmental sustainability. China is formulating and revising the relevant domestic laws and regulations in order to promote the access to forest tree genetic resources and the sharing of benefits arising from their utilization.

7.1 Frameworks of law and policy

7.1.1 International conventions

At present, there are three major international systems involved in the implementation of the access to genetic resources and the fair and equitable sharing of benefits arising from their utilization between countries, they are: Convention on Biological Diversity (CBD), International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGR) and the WIPO Intergovernmental Committee on Intellectual Property and Genetic Resources, Traditional Knowledge and Folklore. Among them, the regulations on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization in the CBD are the most central ones. China has long been actively participating in the international corporation and signed the CBD in 1992, so as to promote the access to genetic resources and the fair and equitable sharing of benefits arising from their utilization.

The Convention on Biological Diversity has three main goals: the conservation of biological diversity, the sustainable utilization of its components and the fair and equitable sharing of benefits arising from the utilization of genetic resources. The CBD recognized the sovereignty of States over their natural resources, and the access to genetic resources should be subject to the prior informed consent of the country in whose territory the resource is located, then defining the

conditions on how the benefits arising from the utilization should be shared with the country where the resource is geographically located. As the *Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity* took effect, it further promoted worldwide conservation and utilization of genetic resources.

7.1.2 Domestic legislation and policies

At present, China has not yet established specialized legal system on access to plant genetic resources and the sharing of benefits arising from their utilization, but as for the access to plant genetic resources, rules have already been established in some laws and regulations.

- Article 9 in the *Constitution of the People's Republic of China* provides that: the state ensures the rational use of natural resources and protects rare animals and plants. Appropriation or damaging natural resources by any organization or individual by whatever means is prohibited. In addition, "Crimes of Undermining Protection of Environmental Resources" added to the *Criminal Law of the People's Republic of China*.
- 2) Articles in the second chapter "The Protection of Genetic Resources" of the Seed Law of the People's Republic of China are regulations about the protection, prohibition, management and exchange of seed resources, also provides the official procedure of supplying seed resources to foreign countries. In 2008, the SFA announced the "FGR Management Approach", which specifically standardized provisions on the collection, documentation, evaluation, recording, conservation, exchange and use of FGR.
- 3) The Patent Law of the People's Republic of China (2008 Amendment) took effect in October 1, 2009. This new amendment version clearly defined the principle of origin disclosure of genetic resources, i.e. the addition of "No patent will be granted for an invention based on genetic resources if the access or utilization of the said genetic resources is in violation of any law or administrative regulation", "For an invention based on genetic resources, the applicant shall state the direct origin and the initial origin of genetic resources in the application documents. If

the applicant is unable to state the origin, she or he shall state the reasons."

- (4) China has already formulated a series of specific or related laws and regulations on the protection of biological genetic resources, including: the "Forest Law"; the "Wildlife Protection Law"; the "Environmental Protection Law"; the "Marine Environment Protection Law"; the "Grassland Law"; the "Fishery Law"; the "Water and Soil Conservation Law"; the "Regulations on Wild Plants Protection"; the "Regulations on the Administration of Import and Export of Endangered Wild Fauna and Flora"; the "Regulations on Nature Reserves"; the "Regulations on the Protection of New Varieties of Plants" etc.
- (5) Besides, China has also developed relevant sectoral rules and local regulations, for example: the "List of Rare and Endangered Plant Species", the "List of Genetically Improved Forest Trees", the "Regulations for the Implementation of Protection of Terrestrial Wildlife Animals" etc.

All the laws and regulations mentioned above played an important role in promoting collection, conservation and utilization of genetic resources in China.

7.2 Stakeholders

Stakeholders involved in accessing and benefits sharing include the management departments of genetic resources, the providers of genetic resources and the users of genetic resources.

The SFA is in the competent authority of FGR in China, and its main responsibilities in FGR management include: issuances of logging permit and wild plants collection permit, approvals of import and export of China's wildlife with national priority for protection and study tours on China's wildlife by foreigners.

FGR Providers in China mainly include state-owned institutions, collective-owned institutions and individuals. The state-owned institutions are mainly nature reserves, world natural heritages, forest park and scenic areas, state-owned forest farms, experimental bases of research

institutions, botanical gardens, nurseries of FGR collections, propagation bases of improved forest trees etc. Collective-owned institution mainly refers to the owners of collectively-owned mountain forests in forest regions where the target FGR is located. Individuals mainly refer to the owners of improved forest trees.

Users of FGR mainly include scientific research institutions and universities and schools of higher education, enterprises and individuals involved in producing and managing FGR.

7.3 The state of Access to Genetic Resources

7.3.1 Access to genetic resources across countries

For a long time, China has been imposing a strict control over import and export of genetic resources. Any import and export of forest tree seeds by any institution or individual shall be approved by the SFA. China has already established cooperative relationships with various international (or regional) organizations and networks related to FGR (Table 7-1), playing an increasingly important role in the field of international cooperation in the field of FGR.

Table 7-1: Major International (or Regional) Organizations and Networks Cooperating with China

Organizations or networks	Abbreviation
United Nations Development Programme	UNDP
Food and Agriculture Organization of the United Nations	FAO
United Nations Forum on Forests	UNFF
Global Environment Facility	GEF
Asia Pacific Forest Genetic Resources Program	APFORGEN
Teak Network	TEAKNET
International Tropical Timber Organization	ITTO
International Network for Bamboo and Rattan	INBAR
International Sea-buckthorn Association	ISA
Biodiversity International	BI
International Union for the Protection of New Varieties of Plants	UPOV
Asia Pacific Association of Forestry Research Institutions	APAFRI
World Wide Fund for Nature	WWF

The Nature Conservancy	TNC
International Union for Conservation of Nature	IUCN
Wetlands International	WI
The Global Network for Forest Science Cooperation	IUFRO
Center for International Forestry Research	CIFOR
Conservation International	CI
East Asia Plant Variety Protection Forum	EAPVPF

Methods on access to genetic resources mainly include bilateral cooperation researches, species introduction experiments, exchanges, donations, and purchases etc. CAF has established a nationwide research network of tree introduction and domestication, and exchanged tree seeds with more than 60 foreign research institutions and botanical gardens.

As a country with abundant FGR, China has provided a large amount of FGR to other countries. China has more than 8,000 species of woody plants, many of which were introduced to foreign countries, e.g. Kiwi fruit, *Gingko*, *Metasequoia* (dawn redwood), Peony, *Rhododendron* and *Paulownia* etc. Many endemic tree species with significant economic values have been introduced into many other countries and made an important contribution to the whole world.

In recent years, governments heightened the conservation of FGR into a strategic level, and many countries established their own laws and regulations on conservation of plant genetic resources, and limit the export of genetic resources. The international access to genetic resources is becoming increasingly difficult and the quantity of access becomes less and less.

7.3.2 Access to domestic genetic resources

The SFA is in charge of the domestic access to FGR. Because of the process of accessing to FGR involves multiple stakeholders, there are diverse and easy ways of access to FGR, therefore, it is difficult for the government to monitor and supervise. Domestic access to FGR mainly includes cooperative researches, introduction experiments, exchanges, administrative allocation and donations, purchases etc.

From 2003, China started to develop the National FGR Platform, and the major goals are: to provide sharing services of information and FGR through the platform; to provide users with FGR and related information in different ways; and to study mechanisms of sharing of benefits arising from the utilization of genetic resources and models of operation, in order to lay a foundation for full access and utilization of genetic resources and benefit in future.

7.4 The state of benefit sharing

The sharing of benefits arising from the utilization of FGR was progressively developed with the negotiation and performance of the Convention on Biological Diversity. Major benefits arising from the utilization of FGR include that of forest products and improved germplasm of forest trees; and there are two ways to share these benefits: monetary benefit-sharing and non-monetary benefit-sharing. There are no special laws and regulations on the sharing of benefits arising from their utilization until now. And among all the existing laws and regulations, still no one involves the mechanism of the sharing of benefits arising from the utilization of genetic resources, because of this fact, most cases of the sharing of benefits arising from the utilization of genetic resources are spontaneous contractual agreements between providers and users, specifying respective responsibilities rights and benefits of both sides based on mutually agreed terms, such as joint development, technology share holdings, technology transfer, authorized utilization and many other forms. Although preliminary studies has been done on the benefit-sharing mechanisms, there are still many difficulties in actual operation, for example, most of the practices of sharing of benefits arising from the utilization of genetic resources were made in principle and with no requirements for legally binding. Apart from this, another fact is that it takes a long time to generate benefits from using genetic resources, it is difficult to track and share the benefits arise from the utilization of resources, the benefits for resources providers were hardly guaranteed.

70

7.5 Major problems, needs and priorities for future work

- For the fact that there lack the specific laws, regulations and corresponding management systems on access to FGR and the sharing of benefits arising from their utilization, there is an urgent need to develop relevant laws and regulations.
- 2) Establishing mechanisms for access and benefit sharing, and developing models of ABS agreement, in order to promote the implementation of the system of ABS.
- There is a need to strengthen advocacy, training and education on ABS system, and increase public awareness on FGR conservation and benefit sharing.

Chapter 8 Contributions to food security, poverty alleviation and sustainable development

FGR are basic resources for the development and survival of human society, and they provide guarantees for national ecological security and sustainable development, they also make great contributions to improve the comprehensive forestry productivity, the supply of edible products and oil and poverty alleviation.

8.1 Contributions to food security

China encourages the development of various economic forests. The components of economic forest are mainly tree species of extensive edible value, including nut trees (e.g. Chestnut, Walnut, Persimmon, Jujube etc.), fruit trees (e.g. Blueberry, Apple, Sea-buckthorn, Apricot etc.), woody vegetable trees (e.g. *Toona sinensis*, Chinese prickly ash, bamboo-shoot etc.) and woody oil-yielding trees (e.g. *Camellia oleifera*, olive, oil palm etc.) (Appendix table 6). The development of economic forests enriches the types of food and makes great contributions to food security.

8.1.1 Woody species for food

Development and utilization of food trees enriches the types of food, increases the supply of green and healthy food, and making contributions to food security. Currently, more than 100 species of woody plants for food are being cultivated and utilized in China, with an area of 2.667 million ha, an output of 1.7 billion kg. Walnut, Chestnut, Jujube and Persimmon are known as four major nut species in China, and Apricot, Pistachio, *Torreya grandis, Carya*, Pines (for edible seeds) are also widely grown (Appendix table 22). The yield and quality of all those species improved a lot through the selection, exploring and extension of the genetic resources of these species. For example, due to the large diversity Chinese chestnut genetic resources, many Chinese chestnut

varieties have been developed respectively suitable for the Yangtze River basin, northern, northwestern, southeastern, southwestern and northeastern China, with significantly improved yield and quality. Currently, the area of Chinese chestnut is more than 0.5 million ha with a yield of more than 0.6 billion kg, accounting for 60% of the total yield of chestnut in the world. Growing chestnut is one of the major sources of income generation for famers in many regions, especially mountain areas. Besides, genetic resources of Walnut, Jujube and many other fruit species are also abundant in China, making great contributions in maintaining China's food security.

8.1.2 Woody species for edible oil

China has more than 50 species of arbors and shrubs producing edible oil, among them, *Camellia oleifera*, Walnut, Apricot, Oil palm have concentrated distribution and can be grown in large-scale for commercial production (Appendix table 22). Woody plants for edible oil are resistant to stress conditions, easy to manage. In recent years, a number of high quality and high yield oil-tea varieties have been developed in some provinces in the subtropics of China, such as: the series of varieties of Xianglin oil-tea, Yalin oil-tea, Changlin oil-tea and Cenxi oil-tea with soft branches, which are widely grown in provinces of Hunan, Jiangxi, Zhejiang and Guangxi, greatly promoting large-scale development of oil-tea industry. Up to 2010, the area of oil-tea trees in China was 3.7 million ha and the annual yield was more than 0.2 billion kg.

8.1.3 Fruit tree species

China has a large number of fruit tree species, traditional species include Apple, Plum, Pear, Peach, Citrus, Pomegranate, Persimmon, Shaddock, Apricot, Grape, Loquat, Longan, Lychee, Coconut etc; while the newly explored and utilized species include Bueberry, *Vaccinium*, Raspberry, and Cherry etc.(Appendix table 22). Among the species, the yield and export volume of Apple ranked the first in the world. The yield of Apple in 2003 was 21.1 billion kg, and reached 27.86 billion kg in 2007. In 2010, the total area of fruit trees amounted to 11.77 million ha with a total fruit production of 127 billion kg and an annual output value of more than RMB 130 billion.

8.1.4 Woody vegetable species

China has a large number of woody vegetable species, such as: Toona sinensis, Chinese prickly ash, Aralia elata, Elm, Bamboo (or bamboo shoots), Rattan, Vaccinum bracteatum, Slender acanthopanax, Cassia siamea, Lespedeza, Black locust, Aspen, weeping Willow, Kerria japonica, Yunnan Keteleeria etc. In recent years, China also succeeded in introducing some good woody vegetable species from South America and India, e.g. Cauliflower tree, Moringa, woody tomato etc. Most of the woody vegetables are natural green food. However, the number varieties of these woody vegetables is still small, and only a few species such as Toona sinensis, Chinese prickly ash, Bamboo have been grown in large-scale (Appendix table 22). The total yield of dried bamboo shoots and all the other forest food products amounted to 26.3 trillion kg in 2009. A farmer who planted 1.3 ha of the varieties 'Dahongpao' of Chinese prickly ash in Yanggao village of Pingshun county in Shanxi province, with an annual yield of more than 1,250 kg, generating an income of over RMB 20,000. More than 20 villages are now specialized in growing Chinese prickly ash in Pingshun County and the industry in this county stepped into the fast track of large scale development. The total area of growing the species in Pingshun County amounted to 9,000 ha, with an annual yield of 1.85 million kg and a product value of RMB 37 million, leading to an increase of annual income per capita by RMB 240.

8.2 Contributions to poverty alleviation

FGR has made great contributions to the restructuring of rural production system, poverty alleviation, income increase etc. Utilization of FGR has also helped to maintain famers' livelihoods, provision of fire-wood and fodder, and supplement of food.

8.2.1 Managing FGR to promote restructuring of rural production system

Crop farming s is a labor-intensive activity, it needs continued cultivation, fertilization, weeding and

harvesting. In contrast, growing economic forest trees has long growth cycles, simple management and maintenance, leading to time-saving and greater benefits. Farmers were freed from heavy workload and have more time to engage in other industries. The application of improved varieties significantly increased the income of farmers, and enhanced farmer's enthusiasm in planting trees, further changed the traditional grain cropping system for some areas and households. For example, Yulin city in the northern part of Shanxi Province, by promoting the use of improved varieties of *Prunus armeniaca* and jujube etc, the annual income increased by more than RMB 1000 in more than 8% of the households, and even by several thousand RMB in some households. In 2009, a farmer household in Tianyuan Village of Yuhemao County in Yuyang district planted 1 ha Prunus armeniaca, which yielded more than 1,100 kg of almonds, generating a profit of more than RMB 8,300 excluding the cost, the annual income of the household exceeded 10,000 RMB coupled with an income of more than RMB 3,000 from other crops. Growing improved varieties convincingly promoted the implementation of land reclaim program and increased the proportion of economic forest trees. According to a survey in 2009, about 75.25% of households in Yulin were growing economic forest trees, which became an important source of income generation, and further driving the development of other industries such as processing, trading and services.

Cultivating *Carya* has become a leading industry of the rural economy in the main production areas of *Carya*. By growing improved *Carya* varieties in places such as Zhejiang and Anhui, the income of farmers was increased, at the same time the rural industrial structure was adjusted. The area of growing *Carya* in recent years was about 16,670 ha, with a total output of 6.3 million kg, and an annual output value of RMB 400 million, accounting for 85% of the total income of farmer household (Appendix table 22).

8.2.2 FGR utilization for poverty alleviation and income generation in rural areas

China has abundant genetic resources of economic tree species. Through propagation and management improved FGR, farmers' income was increased, achieving good impacts. The area

of growing reproduced forest trees increased from 0.59 million ha in 2005 to 0.688 million ha in 2010 (Table 8-1), and increased 200,000-300,000 jobs, the proportion of forestry income in the total farmers' income increased significantly. According to surveys, the income proportion of forestry in the total jumped from previous' less than 10% to 50% in Zanghuang county of Hebei province, Jiaonan city in Shandong province.

Year	Area of reproduced tree stocks	Total number of trees	Number of improved varieties	Total no. of nurseries	 Proportion of nurseries ownerships in number ownerships in area 			series area		
	Million ba	Billion	Billion	Million	State	Collective	Individual	State	Collective	Individual
	WIIIIOTTTIa	plants	plants	WIIIIOT	Owned	Owned	Owned	Owned	Owned	Owned
2005	0.59	32.2	13.9	0.32	3.0%	4.0%	93.0%	17.8%	10.0%	72.2%
2006	0.60	41.7	12.4	0.31	3.5%	3.2%	93.3%	19.3%	8.2%	72.5%
2007	0.65	41.6	13.3	0.34	3.0%	3.0%	94.0%	20.6%	6.2%	73.2%
2008	0.661	46.4	12.5	0.29	3.0%	2.0%	95.0%	19.4%	5.5%	75.1%
2009	0.659	41.5	12.5	0.295	3.0%	3.0%	94.0%	14.7%	5.5%	79.8%
2010	0.688	42.3	13.1	0.336	2.6%	2.4%	95.0%	15.6%	5.8%	78.6%

Table 8-1: Area, quantity and ownership proportions of reproduced tree stocks in China

Data Sources: China's Forestry Statistical Yearbook

8.3 Contributions to sustainable development

China's rich FGR play an important role in the sustainable development of forestry and agriculture, especially those improved species with high wood quality, fast growth, strong tress resistance and wide adaptability. Up to 2009, 2,776 varieties in China have been certified as genetically improved varieties at national and local levels, these varieties have significantly higher adaptability and some of them have significant disease and pest resistance, and the yield of timber averagely increased by 15-25%, the comprehensive benefit increased by 15-32%. Besides, there are still many superior provenances, families, clones, and local varieties have not been yet certified, but are also used in national afforestation projects and other tree planting practices.

China's area of plantation forest ranks the top in the world, among the plantations, FGR and especially the improved ones have been extensively used. For example, superior provenances,

families and clones of Poplar, Eucalypts, Chinese fir, Masson pine have been largely used in short-rotation industrial plantations for timber and pulpwood, among them the Poplar trees have gone through five generation-turnovers, and 2-3 generations have been upgraded for seed orchards of Chinese fir and Masson pine. Each generation possesses more superior characteristics on the basis of the previous generation. The yield and economic benefit per unit area have been significantly increased, and so did for disease and pest resistance, making great contribution to sustainable development of agriculture and forestry.

In the agroforestry system, the application of improved FGR such as *Paulownia elongata*, the variety 'Yutong 1', new Poplar varieties, Black walnut varieties, played a significant role in improving soil fertility, blocking sandstorms, thereby reducing natural disasters and increasing grain yield of the interplanted trees and crops. In Henan Province alone, grain output increased hundreds of millions of kilograms and natural disasters losses reduced about RMB 3-4 billion through appropriate selection of different FGR to establish farmland shelterbelts, forming a landscape of vigorous forests and high yielding crops. Song Village of Kaihua County in Zhejiang province once lacked more than 35,000 kg of grain in a year, by intercropping crops with trees, and now the village has a grain surplus of 30,000 kg. Meanwhile, the yield of Camellia oleifera seeds was doubled. Intercropping crops with trees can also increase the unit area productivity and farmers' income. Gaoyi County of Hebei province selected genetic resources of improved varieties of *Fraxinus* and *Gingko*, and made intercropping of trees and crops in different models, resulting in increased yield and income, as well as increased farmers' enthusiasm in planting trees and crops. According to statistics, Gaoyi County planted 550,000 intercropped trees, and achieved an annual income increased of RMB 1,200 per Mu. The networked farmland accounted for 80% of the total arable land of the county, and the forest coverage in the county jumped from 1.8% in 2004 to 12.8% in 2010, which play an important role in the sustainable development of agriculture and forestry.

Through the application of improved FGR, China established a lot of shelterbelt forests (such as coastal shelterbelt forests, the Yangtze River shelterbelt forests, the Three-North shelterbelt forests etc.), soil and water conservation forests, farmland shelterbelt forests, water source forests

etc., which played important roles in regulating climate, conserving water and soil, improving soil, windbreak and sand-fixation, windbreak and slope-fixation, and in reinforcing the comprehensive productivity of farmland and woodland. It helps to improve ecological environment in China and the world, and to promote long-term, stable and sustainable development of agriculture and forestry.

8.4 Contributions to realizing the "Millennium Goals"

In September 2000, at the Millennium Summit, world leaders adopted the "Millennium Declaration". The Declaration defined the eight Millennium Development goals (Box 1).

Social, economical, ecological and many other functions of FGR make direct or indirect contributions to the realization of the Millennium Goals. The direct contributions include poverty alleviation, guarantee food security, promotion of social economic development, and safeguarding agriculture and forestry productions and environmental sustainability. Indirect contributions include reduction of child mortality, improvement of women's health, promotion of gender equality through guaranteeing food security, providing natural medicines and improvement of economic conditions. The genetic diversity carried by FGR is the foundation for evolution and adaptations to environmental changes, and the fundamental guarantee of the direct and indirect benefits mentioned above.

As a country with abundant FGR, Science-based conservation and rational utilization of the FGR not only contribute greatly to domestic food security, poverty alleviation, sustainable development and realization of many other Millennium Goals, but also greatly contribute to realizing the Millennium Goals worldwide. Unique FGR of endemic trees such as *Gingko, Castanea mollissima, Metasequoia*, Chinese scholar tree, Walnut, Kiwi fruit, have already been planted in many regions in the world, and some of them become a very important component in developing local economy. Many gardening trees in Europe were from China.

78

Box 1: UN Millennium Development Goals

- 1. Eradicate extreme hunger and poverty
- 2. Achieve universal primary education
- 3. Promote gender equality and empower women
- 4. Reduce child mortality
- 5. Improve maternal health
- 6. Combat HIV/AIDS, malaria and other diseases
- 7. Ensure environmental sustainability
- 8. Develop a global partnership for development

8.5 Major problems, needs and priorities for future work

8.5.1 Major problems and needs

- The lack of technical support and market guidance in some areas resulted in a blind planting of monoculture plantations, and farmers are poor in resisting market volatility. There is an urgent need of improving the diversity of cultivating species and strengthening technical guidance and market guidance in order to reduce risks.
- 2) The number of new varieties of woody food- and oil-yielding trees, fruit trees and vegetable trees with high benefits and great demands is not large, so there is an urgent need to increase integrated exploitation and utilization of FGR, and to develop new varieties with high added values and market prospects, and help farmers get rid of poverty and become better off.
- 3) The extent of popularization of improved trees is not wide enough, and there is a need to establish a mechanism of participation by farmers in the process of collection, conservation, development and utilization of FGR, and to promote FGR conservation and utilization.

8.5.2 Priorities for future work

- 1) Strengthening technical training and guidance on market information; improving farmers' professional skills and ability of science-based plantings in order to increase farmers' income.
- 2) Intensifying development and utilization of FGR with high benefits and great demand.

Developing new varieties with high added values and market prospects, and help farmers get rid of poverty and become better off.

 Strengthening survey, documentation and cataloguing, and dissemination and extension of improved varieties. And promoting farmers' participation in FGR conservation, management and utilization processes, and offering subsidies to farmers who conserve and use local varieties.

The State of China's Forest Genetic Resources

Appendix tables

Beijing China March 2012

Table of Contents

Table 1	Forest types and areas in China	2
Table 2	Forest ownership and area in China	2
Table 3	Major forest types and main tree species in China	3
Table 4	The priority species and reasons for priority	6
Table 5	Forest species currently used in China	. 16
Table 6	Main tree species with environmental services or social values	. 20
Table 7	List of tree species considered to be threatened	. 25
Table 8a	Annual quantity of seed produced in China	. 34
Table 8b	Annual number of seedlings (or vegetative propagules) planted in China	. 34
Table 9	List of forest species for which genetic variability has been evaluated in China	. 35
Table 10	Target forest species included within in situ conservation programmes/units	. 38
Table 11	List of tree species with ex situ conservation	. 45
Table 12	Seed and vegetative propagules transferred internationally per year (Partial)	. 49
Table 13	List of tree species with genetic improvement programmes	. 52
Table 14	Tree improvement trials (Partial)	. 55
Table 15	Seed orchards established (Partial)	. 57
Table 16	Type of reproductive material available (Partial)	. 58
Table 17	Institutions involved in conservation and use of FGR (Partial)	. 59
Table 18	Needs for developing FGR legislation and priority level	. 60
Table 19	Needs for awareness raising and priority level	. 60
Table 20	Overview of the main activities carried out through networks and species involved	. 61
Table 21	Awareness raising needs. Needs for international collaboration and networking	. 62
Table 22	List of woody plant species important for food security or livelihoods	. 63

Main forest characteristics	Area (1000 ha)
Natural forests	119692.5
Planted forests	61688.4

Table 1 Forest types and areas in China

Data source: Report on the 7th national inventory of forest resources

Table 2Forest ownership and area in China

Forest ownership	Area (1000 ha)
Public	71435.8
Group	51769.9
Private	58175.2

Data source: Report on the 7th national inventory of forest resources

Forest	Main species for each type				
Types	Trees	Shrub			
Cold temperate coniferous forest	Larix gmelinii, Pinus sylvestnis var. mongolica, Picea koraiensis, Picea jezoen, Pinus pumila, Sabina davurica, Quercus mongolica, Fraxinus mandshurica, Ulmus japonica, Betula platyphylla, Populus davidiana, Chosenia arbutifolia, Abies fabri, Picea asperata, Aceraceae, Carpinus cordata, Betula dahurica	Rhododendron dauricum, Betula fruticosa, Betula ovalifolia, Schisandra chinensis, Vitis amurensis, Actinidia kolomikta, Actinidia arguta, Akebia trifoliata			
Central temperate mixed coniferous and broad-leav ed forest	Pinus koraiensis, Picea jezoen, Abies nephrolepis, Larix gmelinii, Larix olgensis, Pinus syluestriformis, Picea koraiensis, Quercus mongolica, Populus davidiana, Populus ussuriensis, Betula ermanii, Fraxinus mandshurica, Juglans mandshurica, Cortex phellodendri, Ulmus pumila, Tilia, Pinus tabuliformis	Vitis amurensis, Schisandra chinensis, Akebia trifoliata			
Warm temperate deciduous broadleav ed forest	Pinus tabuliformis, Platycladus orientalis, Quercus variabilis, Quercus liaotungensis, Quercus mongolica, Quercus aliena, Quercus acutissima, Ulmus pumila, Ailanthus altissima, Koelreuteria paniculata, Fraxinus chinensis, Diospyros lotus, Ziziphus jujuba var. spinosa, Pterocarya stenoptera, Populus tomentosa, Populus simonii, Populus cathayana, Populus hopeiensis, Populus davidiana, Betula platyphylla, Tilia, Ulmus pumila, Juglans mandshurica, Salix matsudana, Sophora japonica, Catalpa bungei, Paulownia fortunei, Broussonetia papyrifera, Morus mongolica, Diospyros lotus, Toona sinensis, Pistacia chinensis, Celtis sinensis, Fraxinus chinensis, Melia azedarach, Pterocarya stenoptera, Platycarya strobilacea, Kalopanax septemlobus, Ulmus parvifolia, Pinus bungeana, Juniperus rigida, Sabina chinensis, Abies nephrolepis, Picea wilsonii, Picea meyeri, Larix principis-rupprechtii, Robinia pseudoacacia, Populus canadensis, Fraxinus velutina, Amorpha fruticosa	Vitex negundo var. heterophylla, Ziziphus jujuba var. spinosa, Cotinus coggygria, Ostryopsis davidiana, Corylus mandshurica, Abelia biflora, Caragana sinica, Lespedeza bicolor, Grewia biloba, Spiraea salicifolia, Padus racemosa, Malus baccata, Sorbaria sorbifolia, Rhododendron simsii, Alangium plataaifoliam, Vitis amurensis, Actinidia kolomikta, Actinidia arguta			
North subtropical	Quercus acutissima, Quercus variabilis, Quercus aliena, Quercus chenii, Liquidambar formosana, Platycarya	Baeckea frutescens, Phyllanthus emblica,			

Table 3 Major forest types and main tree species in China

Forest	Main species for each type			
Types	Trees	Shrub		
evergreen	strobilacea, Albizia kalkora, Dalbergia hupeana, Cornus	Phoenix hanceana, Citrus		
broad-leav	controversa, Pistacia chinensis, Kalopanax septemlobus,	reticulata, Myrica rubra,		
ed and	Sassafras tzumu, Phoebe zhennan, Acer L, Broussonetia	Eriobotrya japonica,		
deciduous	kazinoki, Cunninghamia lanceolata, Abies fabri, Larix	Melastoma candidum,		
broadleav	chinensis, Melia azedarach, Cryptomeria fortunei, Firmiana	Phyllostachys heterocycla,		
ed forest	simplex	Pseudosasa amabilis		
	Cyclobalanopsis glauca, Fagus longipetiolata,			
	Castanopsis fargesii, Broussonetia kazinoki, Quercus,			
	Cinnamomum camphora, Phoebe zhennan, Sassafras			
	tzumu, Schima superba, Carpinus turczaninowii,			
	Liquidambar formosana, Pinus kesiya var. langbianensis,			
	Lithocarpus glabra, Chukrasia tabularis var. velutina,	Calamus tetradactylus,		
	Gleditsia sinensis, Pistacia chinensis, Pteroceltis tatarinowii,	Caryota ochlandra, Musa		
	Choerospondias axillaris, Pinus massoniana, Cunninghamia	wilsonii, Alocasia		
Central,	lanceolata, Cupressus funebris, pinus yunnanensis, Tsuga	macrorrhiza,		
south	dumosa, Tilia, Ulmus pumila, Betula spp, Alnus japonica,	Rhododendron simsii,		
subtropical	Metasequoia glyptostroboides, Cathaya argyrophylla,	Platycarya strobilacea,		
evergreen	Pseudolarix amabilis, Pseudotaxus chienii, Taiwania	Woodfordia fruticosa,		
broad-leav	cryptomerioides, Keteleeria fortunei, Michelia figo,	Garuga forrestii, Quercus		
ed forest	Glyptostrobus pensilis, Cryptomeria fortunei, Amentotaxus	fabri, Vaccinium		
	argotaenia, Platycladus orientalis, Eucommia ulmoides,	bracteatum, Rhodomyrtus		
	Emmenopterys henryi, Davidia involucrata, Camptotheca	tomentosa, Baeckea		
	acuminata, Tsoongiodendron odorum, Sinowilsonia henryi,	frutescens		
	Platycarya strobilacea, Cyclocarya paliurus, Dipteronia			
	sinensis, Tetracentron sinensis, Liriodendron chinensis,			
	Cercidiphyllum japonicum, Idesia polycarpa, Calycanthus			
	chinensis, Camellia oleifera, Vernicia fordii, Sapium			
	sebiferum, Cryptomeria fortunei, Bamboo, etc.			
	Castanopsis fargesii, Lithocarpus glabra, Cyclobalanopsis	Daemonorops margaritae,		
Tropical	glauca, Cinnamomum camphora, Phoebe zhennan, Machilus	Strychnos nuxvomica,		
monsoon	pingii, Beilschmiedia intermedia, Cryptocarya chinensis,	Millettia dielsiana, Gnetum		
forest,	Alseodaphne hainanensis, Mytilaria laosensis, Manglietia	montanum, Ligustrum		
rainforest	fordiana, Michelia figo, Kmeria septentrionalis, Schima	confusum, Mucuna		
	superba, Aphanamixis polystachya, Toona ciliata, Chukrasia	sempervirens, Tetrastigma		

Forest	Main species for each type				
Types	Trees	Shrub			
	tabularis, Litchi chinensis, Dimocarpus longan, Reevesia	obtectum, Fissistigma			
	pubescens, Heritiera parvifolia, Pterospermum acerifolium,	oldhamii, Melocalamus,			
	Calophyllum inophyllum, Mesua ferrea, Canarium album,	Rhapis humilis, Arenga			
	Sapium sebiferum, Jatropha curcas, Adina pilulifera, Pouteria	engleri, Pinanga Bl.,			
	annamensis, Annamocarya sinensis, Rhoiptelea chiliantha,	Phoenix sylvestris,			
	Gmelina chinensis, Vatica mangachapoi, Hopea hainanensis,	Alocasia macrorrhiza,			
	Dipterocarpus, Parashorea chinensis, Hevea brasiliensis,	Alpinia japonica,			
	Bamboo, etc.				
Inner	Larix sibirica, Abies sibirica, Picea asperata, Platycladus	Alhagi sparsifolia,			
Mongolia,	orientalis, Juniperus formosana, Juniperus rigida, Betula L.,	Elaeagnus oxycarpa,			
Xinjiang	Populus davidiana, Tilia mongolica, Morus mongolica,	Nitraria tangutorum,			
mountain	Cyclobalanopsis glauca, Salix pseudotangii, Salix alba, Betula	Caragana sinica,			
coniferous	albosinensis, Tamarix chinensis, Populus euphratica, Populus	Calligonum mongolicum,			
forest	canescens	Ephedra intermedia,			
		Spiraea salicifolia,			
		Cotoneaster, Cotoneaster			
		melanocarpus, Lonicera			
		japonica			
Qinghai-	Picea wilsonii, Picea asperata, Picea likiangensis, Picea	Rhododendron simsii,			
Tibet	purpurea, Picea retroflexa, Picea smithiana, Picea spinulosa,	Lonicera japonica, Rosa L.,			
alpine	Abies fargesii, Abies faxoniana, Abies fabri, Abies squamata,	Spiraea salicifolia, Rubus			
coniferous	Abies ferreana, Abies forrestii, Abies delavayi, Abies	L., Cotoneaster B., Sorbus			
forest	spectabilis, Larix potaninii, Larix mastersiana, Larix himalaica,	L., Sabina procumbens,			
	Larix griffithiana, Cupressus gigantea, Cupressus chengiana,	Berberis Linn., Salix			
	Cupressus duclouxiana, Pinus armandi, Tsuga chinensis,	cupularis			
	Taxus chinensis, Cephalotaxus sinensis, Castanopsis fargesii,				
	Cinnamomum camphora, Zelkova serrata, Betula L., Fraxinus				
	chinensis, Populus spp., Salix L.				

Data source: Peport on China's forestry resources

No.	Scientific name	Tree (T) or	Native (N) or	Reasons for priority	
		other (O)	exotic (E)	Reasons for priority	
1	Cycas revoluta	Т	N	Gardening	
2	Ginkgo biloba	Т	Ν	Endemic, Threatened, Gardening, Economic	
3	Abies fabri	Т	Ν	Endemic, Timber	
4	Abies fargesii	Т	Ν	Endemic, Timber	
5	Abies ferreana	Т	Ν	Endemic, Timber	
6	Abies holophylla	Т	Ν	Endemic, Timber	
7	Abies squamata	Т	Ν	Endemic, Timber	
8	Cathaya argyrophylla	Т	Ν	Endemic, Threatened	
9	Cedrus deodara	Т	Ν	Gardening, Timber, Medicinal	
10	Keteleeria fortunei	Т	Ν	Endemic , Timber	
11	Keteleeria davidiana	Т	Ν	Endemic , Timber	
12	Larix chinensis	Т	Ν	Endemic, Threatened	
13	Larix gmelinii	Т	Ν	Timber	
14	Larix kaempferi	Т	E	Timber	
15	Larix mastersiana	Т	Ν	Endemic, Threatened	
16	Larix olgensis	Т	Ν	Timber	
17	Larix potaninii	Т	Ν	Endemic , Timber	
18	Larix griffithiana	Т	Ν	Timber	
19	Larix principis-rupprechtii	Т	Ν	Endemic, Timber	
20	Larix sibirica	Т	Ν	Timber	
21	Picea asperata	Т	Ν	Endemic, Timber, Gardening	
22	Picea brachytyla	Т	Ν	Endemic, Timber	
23	Picea crassifolia	Т	Ν	Endemic, Timber	
24	Picea koraiensis	Т	Ν	Timber	
25	Picea meyeri	Т	Ν	Endemic, Timber	
26	Picea likiangensis	Т	Ν	Endemic, Timber	
27	Picea purpurea	Т	Ν	Endemic, Timber	
28	Picea schrenkiana	Т	Ν	Timber	
29	Picea wilsonii	Т	Ν	Endemic, Timber, Gardening	
30	Pinus armandi	Т	Ν	Endemic, Timber, Gardening	
31	Pinus bungeana	Т	Ν	Endemic, Gardening	
32	Pinus caribaea	Т	E	Timber	
33	Pinus densata	Т	Ν	Endemic, Timber	
34	Pinus elliottii	Т	E	Timber	
35	Pinus henryi	Т	N	Endemic, Timber	
36	Pinus kesiya var. langbinnensis	Т	Ν	Timber	
37	Pinus koraiensis	Т	Ν	Timber	

Table 4 The priority species and reasons for priority

No.	Scientific name	Tree (T) or other (O)	Native (N) or exotic (F)	Reasons for priority
38	Pinus latteri		N	Timher
39	Pinus massoniana	Т	N	Timber
40	Pinus sylvestris var. mongolica	Т	N	Timber, Protection
41	Pinus tabulaeformis	Т	N	Endemic, Timber
42	Pinus taeda	Т	E	Timber
43	Pinus taiwanensis	Т	N	Endemic , Gardening
44	Pinus thunbergii	Т	E	Timber, Protection
45	Pinus densiflora	Т	N	Endemic, Timber
46	Pinus yunnanensis	Т	N	Timber
47	Pseudolarix amabilis	Т	N	Endemic, Threatened, Gardening
48	Pseudotsuga forrestii	Т	N	Endemic, Threatened
49	Pseudotsuga gaussenii	Т	N	Endemic, Threatened
50	Pseudotsuga sinensis	Т	N	Endemic, Threatened
51	Pseudotsuga wilsoniana	Т	N	Endemic, Threatened
52	Tsuga chinensis	Т	N	Endemic, Timber
53	Tsuga chinensis var. oblongisquamata	Т	Ν	Endemic, Timber
54	Tsuga chinensis var. tchekiangensis	Т	Ν	Endemic, Timber
55	Tsuga chinensis var. forrestii	Т	Ν	Endemic , Timber
56	Tsuga longibracteata	Т	Ν	Endemic, Timber
57	Tsuga mertensiana	Т	Ν	Endemic, Timber
58	Cryptomeria fortunei	Т	N	Endemic, Timber
59	Cunninghamia lanceolata	Т	N	Endemic, Timber
60	Glyptostrobus pensilis	Т	N	Endemic, Threatened, Gardening
61	Metasequoia glyptostroboides	Т	Ν	Endemic, Threatened, Gardening
62	Taiwania cryptomerioides	Т	N	Timber
63	Taxodium ascendens	Т	E	Timber
64	Taxodium distichum	Т	E	Timber, Gardening
65	Chamaecyparis formosensis	Т	Ν	Endemic, Threatened
66	Cupressus chengiana	Т	Ν	Endemic, Timber
67	Cupressus funebris	Т	N	Endemic, Timber, Gardening, Protection
68	Cupressus gigantea	Т	N	Endemic , Timber
69	Fokienia hodginsii	Т	N	Timber, Threatened
70	Platycladus orientalis	Т	Ν	Endemic, Timber, Protection, Gardening
71	Sabina chinensis	Т	Ν	Timber, Protection, Gardening
72	Sabina vulgaris	0	N	Endemic, Gardening, Protection
73	Sabina saltuaria	Т	N	Endemic, Timber
74	Thuja occidentalis	Т	E	Timber, Gardening
75	Podocarpus macrophyllus	Т	N	Gardening
76	Nageia nagi	Т	N	Timber, Garden

No.	Scientific name	Tree (T) or other (O)	Native (N) or exotic (E)	Reasons for priority
77	Cephalotaxus sinensis	T	N	Endemic , Garden
78	Pseudotaxus chienii	Т	N	Endemic, Threatened
79	Taxus chinensis	Т	N	Endemic, Threatened, Medicinal, Gardening
80	Taxus chinensis var. mairei	Т	N	Garden, Timber, Medicinal
81	Taxus cuspidata	Т	N	Garden, Timber, Medicinal
82	Taxus fuana	Т	N	Timber
83	Taxus wallichiana	Т	N	Timber
84	Torreya fargesii	Т	N	Endemic, Threatened
85	Torreya grandis	Т	N	Timber
86	Torreya grandis 'Merrillii'	Т	N	Economic
87	Casuarina equisetifolia	Т	E	Protection, Timber
88	Populus alba	Т	N	Protection, Timber
89	Populus cathayana	Т	N	Protection, Timber, Endemic
90	Populus davidiana	Т	N	Timber
91	Populus deltoides	Т	E	Timber
92	Populus euphratica	Т	N	Timber, Protection
93	Populus nigra	Т	E	Timber
94	Populus nigra var. thevestina	Т	N	Timber
95	Populus simonii	Т	N	Timber, Protection
96	Populus tomentosa	Т	N	Endemic, Timber
97	Populus x canadensis	Т	E	Timber
98	Salix babylonica	Т	N	Timber, Garden, Endemic
99	Salix matsudana	Т	N	Timber, Protection
100	Salix matsudana f. umbraculifera	Т	Ν	Garden
101	Salix matsudana f. tortuosa	Т	N	Garden
102	Salix psammophila	0	N	Protection
103	Salix integra	0	N	Economic
104	Myrica rubra	Т	N	Endemic, Economic
105	Caraya illinoensis	Т	E	Economic
106	Caraya cathaythsis	Т	N	Endemic, Economic
107	Juglans mandshurica	Т	N	Timber, Threatened
108	Juglans regia	Т	N	Economic
109	Pterocarya stenoptera	Т	N	Timber
110	Alnus cremastogyne	Т	N	Endemic, Timber, Protection
111	Alnus nepalensis	Т	N	Timber
112	Betula alnoides	Т	N	Timber
113	Betula platyphylla	Т	N	Timber
114	Betula luminifera	Т	N	Endemic, Timber
115	Betula albo-sinensis	Т	Ν	Endemic, Timber

No.	Scientific name	Tree (T) or other (O)	Native (N) or exotic (E)	Reasons for priority	
116	Carpinus putoensis	Т	N	Endemic, Threatened	
117	Corylus heterophylla	0	N	Economic	
118	Corylus mandshurica	0	N	Endemic, Economic	
119	Grevillea robusta	Т	E	Garden, Timber	
120	Ostrya rehderiana	Т	N	Endemic, Threatened	
121	Ostryopsis davidiana	0	N	Endemic, Protection	
122	Castanea henryi	Т	N	Economic, Endemic, Timber	
123	Castanea mollissima	Т	N	Economic, Timber	
124	Lithocapus glaber	Т	N	Endemic, Timber	
125	Castanopsis hystrix	Т	N	Timber	
126	Castanopsis kawakamii	Т	Ν	Endemic, Timber, Threatened	
127	Castanopsis fargesii	Т	Ν	Endemic, Timber	
128	Quercus aliena	Т	Ν	Endemic, Timber	
129	Quercus mongolica	Т	N	Timber	
130	Quercus variabilis	Т	Ν	Timber	
131	Quercus acutissima	Т	Ν	Timber	
132	Cyclobalanopsis glauca	Т	Ν	Timber	
133	Cyclobalanopsis myrisinaefolia	Т	N	Timber	
134	Celtis sinensis	Т	N	Timber, Garden	
135	Pteroceltis tatarinowii	Т	N	Endemic, Economic, Garden	
136	Ulmus laevis	Т	N	Endemic, Timber, Gardening	
137	Ulmus parvifolia	Т	N	Endemic, Garden	
138	Ulmus macrocarpa	Т	N	Endemic, Timber	
139	Ulmus pumila	Т	N	Endemic, Timber	
140	Zelkova schneideriana	Т	N	Endemic, Timber, Gardening	
141	Zelkova serrata	Т	N	Timber, Gardening	
142	Artocarpus heterophyllus	Т	N	Timber , Economic, Garden	
143	Broussonetia papyrifera	Т	N	Timber, Medicinal	
144	Cudrania tricuspidata	Т	N	Garden, Protection	
145	Ficus altissima	Т	Ν	Timber, Garden	
146	Ficus benjamina	Т	Ν	Timber, Garden	
147	Ficus tinctoria	Т	Ν	Timber	
148	Ficus microcarpa	Т	Ν	Garden, Timber	
149	Ficus microcarpa var. pusillifolia	Т	Ν	Garden, Timber	
150	Ficus virens	Т	N	Garden	
151	Morus alba	Т	N	Economic, Timber, Medicinal	
152	Haloxylon ammodendron	Т	N	Protection	
153	Haloxylon persicum	Т	N	Protection	
154	Paeonia lutea	0	N	Endemic, Threatened	
No.	Scientific name	Tree (T) or	Native (N) or	Reasons for priority	
-----	-------------------------------------	-------------	---------------	--	--
455		other (U)	exotic (E)		
155	Paeonia suffruticosa	0	N	Endemic, Garden, Medicinal	
156	Berberis thunbergii	T	N	Gardening	
157	Liriodendron chinense	Т	N	Endemic, Timber, Garden	
158	Magnolia denudata	Т	N	Endemic, Garden, Timber	
159	Magnolia liliflora	Т	Ν	Garden, Endemic	
160	Magnolia Medicinalis	Т	Ν	Economic, Medicinal	
161	Manglietia hainanensis	Т	N	Endemic , Gardening	
162	Manglietia fordiana	Т	N	Endemic, Timber, Garden	
163	Manglietia insignis	Т	N	Timber, Garden	
164	Manglietiastrum sinicum	Т	N	Endemic, Threatened	
165	Michelia chapensis	Т	Ν	Garden, Timber	
166	Michelia figo	Т	N	Endemic, Garden, Medicinal	
167	Michelia macclurei	Т	N	Timber, Gardening	
168	Tsoongiodendron odorum	Т	N	Endemic, Threatened, Gardening	
169	Illicium verum	Т	N	Endemic, Economic, Medicinal, Timber	
170	Polyalthia laui	Т	N	Endemic, Timber	
171	Cinnamomum camphora	Т	N	Timber, Garden	
172	Cinnamomum cassia	Т	N	Endemic, Economic, Medicinal	
173	Cinnamomum japonicum	Т	N	Endemic, Timber, Garden	
174	Phoebe bournei	Т	N	Timber, Gardening	
175	Phoebe zhennan	Т	N	Endemic, Threatened, Timber, Gardening	
176	Machilus thunbergii	Т	N	Timber, Garden	
177	Sassafras randaiense	Т	Ν	Endemic , Timber	
178	Sassafras tsumu	Т	Ν	Endemic, Timber, Garden	
179	Pittosporum tobira	0	Ν	Garden	
180	Liquidambar formosana	Т	N	Garden, Timber	
181	Mytilaria laosensis	Т	N	Timber	
182	Semiliquidambar cathayensis	Т	N	Endemic, Threatened	
183	Eucommia ulmoides	Т	Ν	Endemic, Economic, Threatened, Medicinal	
184	Platanus acerifolia	Т	N	Garden, Timber	
185	Eriobotrya japonica	Т	N	Economic	
186	Malus pumila	Т	N	Economic	
187	Malus spectabilis	Т	N	Endemic, Garden	
188	Prunus triloba	0	N	Garden	
189	Armeniana sibirica	Т	N	Endemic, Economic	
190	Prunus armeniaca	Т	N	Endemic, Economic	
191	Prunus salicim	Т	N	Endemic, Economic	
192	Prunus persica	Т	N	Endemic, Economic, Garden	
193	Prunus cerasifera var. atropurpurea	Т	Ν	Garden	

No	Saiantifia nama	Tree (T) or Native (N) or		Dessens for uniquity	
NO.	Scientific name	other (O)	exotic (E)	Reasons for priority	
194	Prunus mume	Т	N	Endemic, Economic, Garden	
195	Prunus persica	Т	Ν	Economic	
196	Prunus yedoensis	Т	E	Garden	
197	Pyracantha fortuneana	0	Ν	Endemic, Protection	
198	Sorbaria sorbifolia	0	Ν	Garden	
199	Acacia auriculaeformis	Т	E	Timber	
200	Acacia confusa	Т	Ν	Timber, Protection	
201	Acacia crassicarpa	Т	E	Timber	
202	Acacia mangium	Т	E	Timber	
203	Acacia mearnsii	Т	E	Garden, Timber, Economic	
204	Acacia dealbata	Т	E	Garden, Timber	
205	Albizia julibrissin	Т	Ν	Garden, Timber, Protection	
206	Amorpha fruticosa	0	E	Economic, Protection	
207	Cercis chinensis	0	Ν	Gardening	
208	Cercis gigantea	Т	Ν	Endemic, Garden, Timber	
209	Bauhinia variegata	Т	E	Garden, Timber	
210	Bauhinia blakeana	Т	Ν	Gardening , Timber	
211	Caragana microphylla	0	Ν	Protection	
212	Caragana rosea	0	Ν	Endemic, Protection, Medicinal	
213	Caragana sinica	0	Ν	Endemic, Protection, Garden, Medicinal	
214	Caragana korshinskii	0	Ν	Protection, Medicinal	
215	Cassia siamea	Т	Ν	Timber	
216	Dalbergia odorifer	Т	Ν	Endemic, Threatened , Timber	
217	Dalbergia hupeana	Т	Ν	Endemic, Timber	
218	Erythrina variegata	Т	E	Garden, Timber, Medicinal	
219	Erythrina corallodendron	Т	E	Garden, Medicinal	
220	Erythropholeum fordii	Т	Ν	Endemic, Threatened, Timber	
221	Gleditsia sinensis	Т	Ν	Endemic, Garden, Timber	
222	Lespedeza bicolor	0	Ν	Garden, Ecology	
223	Ormosia henryi	Т	Ν	Endemic, Timber, Threatened	
224	Ormosia hosiei	Т	Ν	Endemic, Timber	
225	Pterocarpus indicus	Т	E	Timber	
226	Robinia pseudoacacia	Т	E	Timber, Garden	
227	Sophora japonica	Т	Ν	Endemic, Timber, Garden	
228	Sophora japonica var. pendula	Т	Ν	Garden	
229	Zenia insignis	0	Ν	Endemic, Timber, Protection, Economic	
230	Nitraria tangutorum	0	Ν	Protection	
231	Clausena lansium	Т	Ν	Endemic, Economic, Medicinal	

No.	Scientific name	Tree (T) or other (O)	Native (N) or exotic (E)	Reasons for priority	
232	Murraya paniculata	0	N	Garden, Medicinal	
233	Phellodendron amurense	Т	N	Timber, Threatened , Medicinal	
234	Phellodendron chinense	Т	N	Endemic, Medicinal, Timber	
235	Citrus grandis	Т	N	Endemic, Economic	
236	Citrus limon	Т	N	Endemic, Economic	
237	Citrus sinensis	Т	Ν	Endemic, Economic	
238	Citrus tongerina	Т	Ν	Endemic, Economic	
239	Ailanthus altissima	Т	Ν	Endemic, Protection, Timber	
240	Canarium pimela	Т	Ν	Economic, Medicinal, Timber	
241	Canarium album	Т	N	Timber, Medicinal, Garden	
242	Aglaia odorata	Т	Ν	Endemic, Garden	
243	Chukrasia tabulaxis	Т	Ν	Timber, Garden	
244	Khaya senegalensis	Т	E	Timber	
245	Melia azedarach	Т	Ν	Endemic, Protection, Medicinal, Timber	
246	Melia toosendan	Т	Ν	Timber, Medicinal	
247	Swietenia macrophylla	Т	E	Timber	
248	Swietenia mahagoni	Т	E	Timber	
249	Toona ciliata var. pubescens	Т	Ν	Timber	
250	Toona sinensis	Т	Ν	Timber, Garden	
251	Toona sureni	Т	Ν	Timber	
252	Vernica montana	Т	N	Endemic, Economic	
253	Vernica fordii	Т	N	Endemic, Economic	
254	Hevea brasiliensis	Т	E	Economic	
255	Bischofia polycarpa	Т	Ν	Endemic, Garden	
256	Sapium sebiferum	Т	Ν	Endemic, Economic, Gardening	
257	Coriaria sinica	Т	Ν	Endemic, Protection	
258	Mangifera persiciformis	Т	Ν	Endemic, Garden, Timber	
259	Mangifera indica	Т	Ν	Economic, Timber, Garden	
260	Choerospondias axillaris	Т	Ν	Endemic, Timber, Medicinal, Garden	
261	Pistacia chinensis	Т	N	Endemic, Timber, Gardening	
262	Pistacia vera	Т	E	Economic	
263	Rhus typhina	Т	E	Garden	
264	Toxicodendron verniciflnum	Т	N	Economic	
265	Cotinus coggygria var. cinerea	Т	N	Endemic, Garden	
266	llex rotunda	Т	N	Endemic, Garden, Timber	
267	Euonymus japonicus	Т	N	Garden	
268	Tapiscia sinensis	Т	N	Endemic , Gardening	
269	Acer palmatum	Т	N	Garden	
270	Acer truncatum	Т	N	Endemic, Garden, Timber	

No.	Scientific name	Tree (T) or	Native (N) or exotic (E)	Reasons for priority	
271	Acor mono		N	Endemic Garden Timber	
271	Dinteronia sinensis	T	N		
272	Aesculus chinensis	т Т	N	Endemic Garden Timber	
273	Dimocarnus longan	т Т	N		
274	Dimocalpus longan	т Т	N		
215	Lunycolymbus cavalenei		IN N		
270			IN N	Endemic, Intreatened	
211			IN		
278	Koelreuteria paniculata		N	Garden	
279	Koelreuteria bipinnata var. integriforia	T	N	Endemic, Garden	
280	Litchi chinensis	T	N	Endemic, Economic	
281	Sapindus mukorossi	Т	N	Timber, Garden	
282	Xanthoceras sorbifolia	Т	N	Endemic, Economic	
283	Zizyphus jujuba	Т	N	Endemic, Economic	
284	Burretiodendron hsienmu	Т	Ν	Timber, Threatened	
285	Tilia amurensis	Т	Ν	Timber	
286	Hibiscus syriacus	0	Ν	Endemic, Garden	
287	Hibiscus tiliaceus	0	Ν	Garden	
288	Ochroma lagopus	Т	E	Timber	
289	Bombax malabaricum	Т	Ν	Garden	
290	Firmiana simplex	Т	N	Endemic, Garden, Timber	
291	Camellia japonica	Т	Ν	Endemic, Garden	
292	Camellia oleifera	Т	N	Endemic, Economic	
293	Camellia sinensis	Т	N	Endemic, Economic	
294	Schima superba	Т	N	Endemic, Timber	
295	Schima wallichii	Т	N	Endemic, Timber	
296	Schima argentea	Т	N	Endemic, Timber	
297	Tamarix chinensis	0	N	Endemic, Protection	
298	Tamarix ramosissima	0	N	Endemic, Protection	
299	Tamarix austromongolica	0	N	Endemic, Protection	
300	Hopea hainanensis	Т	N	Timber, Threatened	
301	Homalium hainanense	Т	N	Timber	
302	Aquilaria sinensis	Т	E	Economic	
303	Elaeagnus angustifolia	Т	N	Endemic, Protection, Economic	
304	Elaeagnus mollis	Т	N	Endemic, Economic, Threatened	
305	Hippophae rhamnoides spp.sinensis	0	N	Economic, Protection	
306	Sonneratia caseolaris	Т	N	Protection, Timber	
307	Bruguiera gymnorrhiza	Т	N	Protection, Timber	
308	Rhizophora apiculata	Т	N	Protection, Timber	
309	Camptothecca acuminata	Т	N	Endemic, Timber , Garden	

No.	Scientific name	Tree (T) or	Native (N) or	Reasons for priority	
210	Devidio involverato	other (U)		Federaie Threatened, Conden	
310		1 	N	Endemic, i nreatened , Garden	
311	Terminalia catappa	 	E	Timber, Garden, Protection	
312	Eucalyptus camaldulensis	-	E -	limber	
313	Eucalyptus citriodora	T	E	Timber	
314	Eucalyptus dunnii	Т	E	Timber	
315	Eucalyptus exserta	Т	E	Timber	
316	Eucalyptus globulus	Т	E	Timber	
317	Eucalyptus maideni	Т	E	Timber	
318	Eucalyptus robusta	Т	E	Timber	
319	Eucalyptus smithii	Т	E	Timber	
320	Eucalyptus urophylla	Т	E	Timber	
321	Eucalyptus viminalis	Т	E	Timber	
322	Eucalyptus grandis	Т	E	Timber	
323	Eucalyptus tereticornis	Т	E	Timber	
324	Syzygium jambos	Т	Ν	Protection, Timber	
325	Acanthopanax senticosus	Т	Ν	Medicinal	
326	Cornus alba	Т	Ν	Garden	
327	Cornus walteri	Т	Ν	Endemic, Economic, Garden	
328	Rhododendron fortunei	Т	Ν	Endemic, Garden	
329	Rhododendron simsii	Т	N	Garden	
330	Rhododendron dauricum	0	Ν	Garden	
331	Forsythia suspensa	0	Ν	Endemic, Garden	
332	Fraxinus rhynchophylla	Т	E	Timber, Protection	
333	Fraxinus bungeana	Т	Ν	Endemic, Protection	
334	Fraxinus chinensis	Т	Ν	Timber, Garden	
335	Fraxinus mandshurica	Т	Ν	Timber, Garden	
336	Jasminum nudiflorum	Т	Ν	Endemic, Garden	
337	Olea europaea	Т	E	Economic	
338	Osmanthus fragrans	Т	Ν	Endemic, Garden, Economic	
339	Syringa reticulata var. amurensis	Т	Ν	Endemic, Timber, Garden	
340	Syringa oblata	Т	N	Endemic, Garden	
341	Syringa pekinensis	0	Ν	Endemic, Garden	
342	Ligustrum lucidum	Т	Ν	Garden, Endemic, Timber	
343	Gmelina hainanensis	Т	Ν	Timber	
344	Tectona grandis	Т	E	Timber	
345	Vitex negundo	0	N	Endemic, Protection	
346	Lycium barbarum	0	N	Economic, Medicinal	
347	Lycium chinense	0	N	Endemic, Economic, Medicinal	
348	Paulownia catalpifolia	Т	Ν	Endemic, Timber	

No	Scientific name	Tree (T) or	Native (N) or	Reasons for priority
110.		other (O)	exotic (E)	Reasons for priority
349	Paulownia elongata	Т	Ν	Endemic, Timber
350	Paulownia fargesii	Т	Ν	Endemic, Timber
351	Paulownia fortunei	Т	N	Endemic, Timber
352	Paulownia kawakamii	Т	N	Endemic, Timber
353	Paulownia tomentosa	Т	N	Endemic, Timber
354	Catalpa bungei	Т	N	Endemic, Timber, Garden
355	Catalpa fargesii f. ducluouxii	Т	N	Endemic, Timber, Garden
356	Dolichandrone cauda-felina	Т	Ν	Endemic, Timber, Garden
357	Emmenopterys henryi	Т	Ν	Endemic, Threatened
358	Kolkwitzia amabilis	Т	Ν	Endemic, Garden
359	Lonicera Japonica	0	N	Economic, Medicinal
360	Lonicera maackii	0	N	Endemic, Economic, Medicinal
361	Viburnum macrocephalum	0	N	Endemic, Garden
362	Bambusa chungii	0	N	Endemic, Timber , Garden
363	Bambusa multiplex	0	N	Garden, Timber
364	Bambusa multiplex 'Fernleaf'	0	Ν	Endemic, Garden, Timber
365	Bambusa pervariabilis	0	N	Endemic, Timber
366	Bambusa textilis	0	N	Endemic, Timber
367	Bambusa ventricosa	0	Ν	Endemic, Gardening
368	Bambusa vulgaris 'Wamin'	0	N	Endemic, Gardening
369	Phyllostachys bambusoides	Т	N	Endemic, Timber
370	Phyllostachys glauca	Т	N	Endemic, Timber
371	Phyllostachys edulis	Т	N	Endemic, Timber
372	Phyllostachys sulphurea var. viridis	Т	N	Endemic, Timber
373	Phyllostachys violascens	Т	N	Endemic, Gardening
374	Phyllostachys nigra	Т	N	Endemic, Garden, Timber
375	Caryota ochlandra	Т	N	Endemic, Garden
376	Cocos nucifera	Т	N	Garden, Protection, Economic
377	Elaeis guineensis	Т	E	Economic
378	Livistona chinensis	Т	Ν	Economic
379	Rhapis excelsa	Т	Ν	Endemic, Garden, Medicinal
380	Rhapis gracilis	Т	N	Endemic, Garden
381	Trachycarpus fortunei	Т	N	Garden, Economic
382	Areca catechu	Т	0	Garden, Medicinal

Data source: Afforestation technologies for major tree species in China (1978); An overview of

cropping industry in China (Forest trees) (2001); The list of of wild plants with national priority for protection (1999).

No.	Species	Current uses	Native (N) or	Type of management
	(Scientific name)	(code)	Exotic (E)	system
1	Ginkgo biloba	1,3	N	PI
2	Abies fabri	1,2	N	Na, Pl
3	Cedrus deodara	1,6	E	Na, Pl
4	Larix gmelinii	1,2	N	Na, Pl
5	Larix kaempferi	1,2	E	Na, Pl
6	Larix olgensis	1,2	N	Na, Pl
7	Larix principis-rupprechtii	1,2	N	Na, Pl
8	Larix sibirica	1,2	N	Na, Pl
9	Picea asperata	1,2	N	Na, Pl
10	Picea koraiensis	1,2	N	Na, Pl
11	Picea crassifolia	1,2	N	Na, Pl
12	Picea schrenkiana	1,2	N	Na, Pl
13	Pinus armandi	1,2	N	Na, Pl
14	Pinus bungeana	1,6	N	Na, Pl
15	Pinus caribaea	1,2	E	Na, Pl
16	Pinus elliottii	1,2	E	Na, Pl
17	Pinus kesiya var.langbinnensis	1,2	N	Na, Pl
18	Pinus koraiensis	1,2	N	Na, Pl
19	Pinus massonoana	1,2	N	Na, Pl
20	Pinus sylvestris var. mongolica	1,6	N	Na, Pl
21	Pinus tabulaeformis	1,2	N	Na, Pl
22	Pinus taeda	1,2	E	Na, Pl
23	Pinus yunnanensis	1,2	N	Na, Pl
24	Pseudolarix amabilis	1,6	N	PI
25	Cryptomeria fortunei	1,6	N	Na, Pl
26	Cunninghamia lanceolata	1,6	N	Na, Pl
27	Metasequoia glyptostroboides	1,6	N	PI
28	Cupressus chengiana	1	N	PI
29	Cupressus funebris	1,6	N	Na, Pl
30	Fokienia hodginsii	1,6	N	PI
31	Platycladus orientalis	1,6	N	Na, Pl
32	Cinnamomum camphora	1,4,6	N	PI
33	Taxus chinensis	1,4,6	N	Na, Pl
34	Taxus chinensis var. mairei	1,4,6	N	Na, Pl
35	Taxus cuspidata	1,4,6	N	Na, Pl

 Table 5
 Forest species currently used in China

No.	Species	Current uses	Native (N) or	Type of management
	(Scientific name)	(code)	Exotic (E)	system
36	Taxus fuana	1,4,6	N	Na, Pl
37	Taxus wallichiana	1,4,6	N	Na, Pl
38	Torreya grandis	1,6	N	PI
39	Torreya grandis 'Merrillii'	1,4,6	N	Na, Pl
40	Casuarina equisetifolia	1,6	N	PI
41	Populus euphratica	1,6	N	Na.
42	Populus alba	1,6	N	Na, Pl
43	Populus davidiana	1,2	N	Na, Pl
44	Populus cathayana	1,2	N	Na, Pl
45	Populus nigra	1,2,3	E	PI
46	Populus deltoides	1,2,3	E	PI
47	Populus nigra var. italica	1,2,3	N	Na, Pl
48	Populus simonii	1,2,3	N	Na, Pl
49	Populus tomentosa	1,2	N	Na, Pl
50	Myrica rubra	4, 6	N	PI
51	Caraya illinoensis	1,4	E	Na
52	Juglans mandshurica	1	N	PI
53	Juglans regia	1,4,5	N	PI
54	Pterocarya stenoptera	1,3,4,5	N	Na, Pl
55	Alnus cremastogyne	1,2,6	N	Na, Pl
56	Castanea henryi	1,4	N	Na, Pl
57	Castanea mollissima	1,4,5	N	Na, Pl
58	Castanopsis hystrix	1,2	N	Na, Pl
59	Quercus variabilis	1,4	N	Na, Pl
60	Quercus mongolica	1	N	Na, Pl
61	Quercus acutissima	1	N	Na, Pl
62	Lithocarpus glaber	1	N	Na, Pl
63	Ulmus laevis	1,6	N	Na, Pl
64	Ulmus pumila	1,6	N	Na, Pl
65	Zelkova serrata	1,6	N	PI
66	Haloxylon ammodendron	4,5,6	N	Na, Pl
67	Haloxylon persicum	5,6	N	Na, Pl
68	Liriodendron chinense	1,6	N	Na, Pl
69	Magnolia Medicinalis	1,6	N	PI
70	Cocos nucifera	1,4,5,6	N	Na, Pl
71	Phoebe bournei	1,6	Ν	Pl

No.	Species	Current uses	Native (N) or	Type of management
	(Scientific name)	(code)	Exotic (E)	system
72	Eucommia ulmoides	1,4	N	PI
73	Prunus persica	1,4,5	N	Na, Pl
74	Eriobotrya japonica	4,6	N	PI
75	Acacia auriculaeformis	1,4	E	PI
76	Acacia confusa	1,4	E	PI
77	Acacia mangium	1,4	E	PI
78	Amorpha fruticosa	6	N	Na, Pl
79	Robinia pseudoacacia	1,4,5,6	E	PI
80	Sophora japonica	1,6	N	PI
81	Zenia insignis	1,6	N	PI
82	Ailanthus altissima	1,6	N	Na, Pl
83	Melia azedarach	1,4,6	N	PI
84	Swietenia macrophylla	1	E	Na, Pl
85	Toona ciliata var. pubescens	1	N	Pl
86	Toona sinensis	1,4,6	N	Na, Pl
87	Toona sureni	1,6	N	PI
88	Hevea brasiliensis	1,4	E	Na, Pl
89	Sapium sebiferum	1,3,6	N	Na, Pl
90	Vernica fordii	1,3,6	N	Na, Pl
91	Anacardium occidentale	4	E	Na, Pl
92	Choerospondias axillaris	1,3,6	N	Na, Pl
93	Phellodendron chinense	4,6	N	PI
94	Pistacia chinense	1,3,6	N	Na, Pl
95	Pistacia vera	4,5	E	Na, Pl
96	Acer truncatum	1,4	N	Na, Pl
97	Xanthoceras sorbifolia	3,4,6	N	PI
98	Zizyphus jujuba	4,5	N	Na, Pl
99	Tilia amurensis	1,6	N	PI
100	Camellia oleifera	4,5	N	Na, Pl
101	Schima superba	1,6	N	Na, Pl
102	Tamarix chinensis	4,5	N	Na, Pl
103	Tamarix ramosissima	4,5	N	Na, Pl
104	Tamarix austromongolica	4,5	N	Na, Pl
105	Hopea hainanensis	1	N	Na, Pl
106	Hippophae rhamnoides	4,5,6	N	Na, Pl
107	Davidia involucrata	6	N	Na, Pl

No.	Species	Current uses	Native (N) or	Type of management
	(Scientific name)	(code)	Exotic (E)	system
108	Eucalyptus citriodora	1,2,4	E	Pl
109	Eucalyptus globulus	1,2,4	E	Pl
110	Eucalyptus camuldulensis	1,2,4	E	Pl
111	Eucalyptus grandis	1,2,4	E	PI
112	Eucalyptus tereticornis	1,2,4	E	PI
113	Eucalyptus urophylla	1,2,4	E	PI
114	Eucalyptus robusta	1,2,4	E	PI
115	Acanthopanax senticosus	4	Ν	PI
116	Fraxinus chinensis	1,4	Ν	Na, Pl
117	Fraxinus mandshurica	1,6	Ν	PI
118	Olea europaea	4	E	Na, Pl
119	Tectona grandis	1,6	E	Pl
120	Paulownia catalpifolia	1,5	Ν	Pl
121	Paulownia elongata	1,5	Ν	Na, Pl
122	Paulownia fargesii	1,5	Ν	Na, Pl
123	Paulownia fortunei	1,5	Ν	Na, Pl
124	Paulownia kawakamii	1,5	Ν	Na, Pl
125	Paulownia tomentosa	1,5	Ν	Na.
126	Catalpa bungei	1,6	Ν	Na, Pl
127	Catalpa fargesii f. ducluouxii	1,6	Ν	Na, Pl
128	Phyllostachys edulis	1,4,6	Ν	Na, Pl
129	Elaeis guineensis	3,4	E	Na, Pl
130	Jatropha curcas	3	E	Pl
131	Swida wilsoniana	3	N	Pl

Current use:

- 1) Solid wood products 4) Non wood forest products (food, fodder, medicine, etc.)
- 2) Pulp and paper 5) Used in agroforestry systems
- 3) Energy (fuel) 6) Other (please specify)

Management Type: Na, natural forest; PI, plantation

Data source: Afforestation technologies for major tree species in China (1978);

No	Spacias (acientific name)	Native (N) or	Environmental service or
NO.	Species (scientific fiame)	Exotic (E)	social value (code)
1	Cycas revoluta	N	4,5,6
2	Ginkgo biloba	N	4,5,6
3	Cedrus deodara	N	4,5
4	Picea meyeri	N	4,5
5	Pinus densata	N	1,4,5
6	Pinus henryi	N	1,4,5
7	Taxodium ascendens	N	1,2
8	Cupressus funebris	N	1,2,3,5
9	Sabina chinensis	N	1,3,5
10	Sabina vulgaris	N	1,3,5
11	Thuja occidentalis	E	1,3,5
12	Podocarpus macrophyllus	N	4,5
13	Populus davidiana	N	1,2,3
14	Populus euphratica	N	1,2,3,5
15	Populus x canadensis	E	1,2
16	Salix matsudana f umbraculifera	N	1,3,5
17	Salix matsudana f. tortuosa	N	1,3,5
18	Salix psammophila	N	1,2,3
19	Salix integra	N	1,2,3
20	Juglans mandshurica	N	1,3,5
21	Betula platyphylla	N	1,2,3,5
22	Corylus heterophylla	N	1,3
23	Corylus mandshurica	N	1,3,5
24	Ostryopsis davidiana	N	1,3
25	Quercus denlata	N	1,2,3
26	Quercus mongolica	N	1,2,3
27	Celtis sinensis	N	1,3,5
28	Pteroceltis tatarinowii	N	1,3,5
29	Ulmus pumila	N	1,2,3,5
30	Zelkova serrata	N	3,4
31	Broussonetia papyrifera	N	1,5,7
32	Cudrania tricuspidata	N	1,3,5

 Table 6
 Main tree species with environmental services or social values

No		Native (N) or	Environmental service or
NO.	Species (scientific name)	Exotic (E)	social value (code)
33	Ficus altissima	N	1,3,5
34	Ficus benjamina	E	3,5
35	Ficus tinctoria	N	3,5
36	Ficus microcarpa	N	1,3,5
37	Ficus microcarpa var.pusillifolia	N	1,3,5
38	Morus alba	N	1,2,3
39	Paeonia suffruticosa	N	4,5
40	Berberis thunbergii	N	1,3,5
41	Liriodendron chinense	N	3,5,7
42	Magnolia denudata	N	5,6
43	Magnolia liliflora	N	4,5,6,7
44	Manglietia hainanensis	N	3,4,5
45	Michelia chapensis	N	3,5
46	Michelia figo	N	3,4,5
47	Michelia macclurei	N	1,2,3,5,7
48	Polyalthia laui	N	3,5
49	Sassafras tsumu	N	2,3,5
50	Pittosporum tobira	N	4,5,7
51	Liquidambar formosana	N	1,2,3,5
52	Platanus acerifolia	N	5,7
53	Amygdalus triloba	N	3,5
54	Malus pumila	N	3,7
55	Malus spectabilis	N	1,3,4,5
56	Prunus armeniaca	N	1,2,3,7
57	Prunus cerasifera var.atropurpurea	N	3,5
58	Prunus mume	N	3,4,5
59	Prunus yedoensis	E	1,3,5
60	Pyracantha fortuneana	N	3,4,5
61	Sorbaria sorbifolia	N	1,3,5
62	Albizia julibrissin	N	1,2,5
63	Amorpha fruticosa	E	1,2,3,5
64	Bauhinia variegate	N	3,5
65	Bauhinia blakeana	N	3,5

Ne	Species (acientific nome)	Native (N) or	Environmental service or
NO.	Species (scientific name)	Exotic (E)	social value (code)
66	Caragana microphylia	N	1,2,3
67	Caragana rosea	Ν	1,2,3,5
68	Cercis chinensis	Ν	3,4,5
69	Erythrina orientalis	E	3,5
70	Lespedeza bicolor	Ν	1,2,3
71	Robinia pseudoacacia	E	1,2,4,5,7
72	Sophora flavescens	Ν	1,2,3
73	Sophora japonica	Ν	4,5,6,7
74	Sophora japonica var. pendula	Ν	5
75	Sophora viciifolia	Ν	1,2,3
76	Wisteria sinensis	Ν	3,5
77	Nitraria tangutorum	Ν	1,2,3
78	Clausena lansium	Ν	3,7
79	Murraya paniculata	Ν	1,3,5
80	Ailanthus altissima	Ν	1,2,3,5
81	Aglaia odorata	Ν	1,3,5
82	Melia azedarach	Ν	1,2,3,7
83	Buxus sinica	Ν	3,5
84	Coriaria sinica	Ν	1,2,3
85	Rhus typhina	E	3,5
86	llex rotunda	Ν	1,3,5
87	Buxus megistophylla	Ν	3,5
88	Acer palmatum	Ν	3,4,5
89	Aesculus chinensis	Ν	3,4,5,6
90	Dimocarpus longan	Ν	3,5,7
91	Koelreuteria bipinnata	Ν	1,3,5
92	Koelreuteria paniculata	Ν	1,3,5
93	Litchi chinensis	Ν	3,5,7
94	Sapindus mukorossi	N	1,3,5,7
95	Zizyphus jujuba	Ν	1,3,7
96	Hibiscus syriacus	E	3,5
97	Hibiscus tiliaceus	N	3,5
98	Firmiana simplex	N	1,3,5

Ne	Spaciae (acientific nome)	Native (N) or	Environmental service or
NO.	Species (scientific name)	Exotic (E)	social value (code)
99	Camellia japonica	N	3,4,5
100	Tamarix chinensis	N	1,2,3,5
101	Elaeagnus angustifolia	N	1,2,3,7
102	Sonneratia caseolaris	N	1,5
103	Bruguiera gymnorrhiza	N	1,5
104	Davidia involucrata	N	3,4,5
105	Terminalia catappa	N	3,5
106	Syzygium hainanense	E	3,5
107	Cornus alba	N	1,2,3,5
108	Rhododendron decorum	N	1,3,5
109	Rhododendron simsii	N	1,3,5
110	Forsythia suspensa	N	1,3,5
111	Fraxinus americana	E	1,2,3,5
113	Fraxinus chinensis	N	1,2,3,5
114	Jasminum nudiflorum	N	3,5
115	Olea europaea	N	3,7
116	Osmanthus fragrans.	N	3,4,5
117	Syringa aromaticum	N	3,4,5
118	Syringa oblata	N	3,4,5
119	Syringa oblate var. affinis	N	3,4,5
120	Vitex negundo	N	1,2,3
121	Lycium chinense	N	1,2,3,7
122	Paulownia catalpifolia	N	2,3,5
123	Paulownia elongata	N	2,3,5
124	Dolichandrone cauda-felina	N	3,7
125	Kolkwitzia amabilis	N	3,5
126	Lonicera Japonica	N	3,5,7
127	Lonicera maackii	N	3,5
128	Viburnum odoratissimum	N	3,5
129	Bambusa vulgaris 'Wamin'	N	3,5
130	Bambusa chungii	N	1,3,5
131	Bambusa multiplex	N	1,3,5
132	Bambusa multiplex 'Fernleaf'	N	1,3,5

No	Spacios (colontific namo)	Native (N) or	Environmental service or
NO.	opecies (scientific fiame)	Exotic (E)	social value (code)
133	Bambusa pervariabilis	N	1,3,5
134	Bambusa textilis	N	3,5
135	Bambusa ventricosa	N	3,5
136	Artocarpus heterophyllus	E	3,5
137	Caryota ochlandra	E	3,5
138	Cocos nucifera	Ν	3,5
139	Rhapis excelsa	Ν	3,5
140	Rhapis gracilis	N	3,5
141	Trachycarpus fortunei	N	5,7
142	Dracaena cochinchinensis	N	3,7

Services and values include:

- 1) Soil and water conservation including watershed management
- 2) Soil fertility
- 3) Biodiversity conservation
- 4) Cultural values

- 5) Aesthetic values
- 6) Religious values
- 7) Other (Specify) _____

		Area (ha) of	Average	Droportion	Distribution:	Type of	Thre	at catego	ry
No	Species	Area (na) or	number of	of	widespread	threat			
NO.	(scientific name)	distribution	trees per	distribution	(W), rare (R),	(Code)	High	Medium	Low
		uistribution	hectare	uistribution	or local (L)				
1	Alsophila spinulosa			20	W	1,3			
2	Reevesia rotundifolia			100	R	3			
3	Cycas micholitzii			80	W	1,3,7			
4	Cycas panzhihuaensis			100	W	1,3,12			
5	Cycas pectinata			25	L	1,3			
6	Cycas siamensis			25	R	3			
7	Cycas taiwaniana			100	L	1,3			
8	Ginkgo biloba			100	W	1,3			
9	Abies beshanzuensis			100	R	1,3			
10	Abies chensiensis			100	W	1,3			
11	Abies fanjingshanensis			100	R	1,3	\checkmark		
12	Abies georgei			100	W	1,3			
13	Abies sibirica			40	L	1			
14	Abies yuanbaoshanensis			100	R	1			
15	Abies ziyuanensis			100	L	1			
16	Cathaya argyrophylla			100	W	1,3			
17	Keleleeria fortunei			100	W	1,3			
18	Keteleeria hainanensis			100	L	1,3			
19	Keteleeria calcarea			100	W	1,3			
20	Keteleeria formosana			100	L	1,3			
21	Keteleeria pubescens			100	L	1,3			
22	Keteleeria xerophila			100	R	1,3			
23	Larix chinensis			100	W	1,3			
24	Larix mastersiana			100	W	1,3		\checkmark	
25	Picea aurantiaca			100	R	1,3			
26	Picea brachytyla			100	L	1,3			
27	Picea montigena			100	R	3			
28	Picea neoveitchii			100	W	1,3			
29	Picea obovata			30	L	1,3			
30	Picea smithiana			30	R	1,3			
31	Pinus dabeshanensis			100	L	11		\checkmark	
32	Pinus koraiensis			60	W	1,3			
33	Pinus kwangtungensis			100	W	1,3			
34	Pinus massoniana var. hainanensis			100	R	3		\checkmark	
35	Pinus roxburghii			20	R	1			
36	Pinus sibirica			30	L	1			
37	Pinus sylvestris var. mongolica			50	W	3,12			

Table 7 List of tree species considered to be threatened

		A	Average	Duonoution	Distribution:	Type of	Thre	at catego	ory
No	Species	Area (na) or	number of	Proportion	widespread	threat			
NO.	(scientific name)	distribution	trees per	distribution	(W), rare (R),	(Code)	High	Medium	Low
		alstilbation	hectare	aistribution	or local (L)				
38	Pinus sylvestriformis			100	R	1,2,3		\checkmark	
39	Pinus takahasii			50	L	1,3			
40	Pinus wangii			100	R	1,2,3		\checkmark	
41	Pseudolarix amabilis			100	W	15		\checkmark	
42	Pseudotsuga brevifolia			100	W	1,3		\checkmark	
43	Pseudotsuga forrestii			100	W	1,3		\checkmark	
44	Pseudotsuga gaussenii			100	W	1,3		\checkmark	
45	Pseudotsuga sinensis			100	W	1,3		\checkmark	
46	Pseudotsuga wilsoniana			100	R	3			\checkmark
47	Tsuga chinensis var. tchekiangensis			100	W	1,3			\checkmark
48	Tsuga forrestii			100	W	3,7			\checkmark
49	Tsuga longibracteata			100	W	1,3			\checkmark
50	Amentotaxus formosana			100	R	3	\checkmark		
51	Amentotaxus argotaenia			100	W	1,3			\checkmark
52	Amentotaxus yunanensis			60	L	3			
53	Cunninghamia unicanaliculata			100	L	3			\checkmark
54	Metasequoia glyptostroboides			100	L	1,2			
55	Taiwania cryptomeriioides			70	L	1,3			
56	Calocedrus macrolepis			100	W	1,3,7			\checkmark
57	Chamaecyparis formosensis			100	W	1,3		\checkmark	
58	Cupressus chengiana			100	W	1,3		\checkmark	
59	Cupressus gigantea			100	R	1,3,7			
60	Fokienia hodginisii			80	W	1,3		\checkmark	
61	Glyptostrobus pensilis			100	L	3,6	\checkmark		
62	Thuja koraiensis			50	L	1,3		\checkmark	
63	Thuja sutchuenensis			50	L	1,3		\checkmark	
64	Daerydium pierrei			20	W	1,3			\checkmark
65	Podocarpus annamiensis			30	L	1,3			\checkmark
66	Podocarpus fleuryi			40	W	1,3			\checkmark
67	Podocarpus imbricatus			25	W	1,3			\checkmark
68	Cephalotaxus hainanensis			20	W	1,3			
69	Cephalotaxus lanceolata			70	W	3,7		\checkmark	
70	Cephalotaxus oliveri			70	W	1,3		\checkmark	
71	Pseudotaxus chienii			100	W	3,7		\checkmark	
72	Taxus chinensis			50	W	3	\checkmark		
73	Taxus chinensis var. mairei			50	W	3	\checkmark		
74	Taxus cuspidate			50	W	3	\checkmark		
75	Taxus fuana			50	W	3	\checkmark		
76	Taxus wallichiana			50	R	1,3			

		A	Average	Description	Distribution:	Type of	Thre	at catego	ry
Na	Species	Area (na) or	number of	Proportion	widespread	threat			
NO.	(scientific name)	natural	trees per	Ol	(W), rare (R),	(Code)	High	Medium	Low
		aistribution	hectare	distribution	or local (L)				
77	Torreya jackii				W	3			
78	Torreya yunnanensis			100	L	1		\checkmark	
79	Chosenia arbutifolia			40	W	3,10		\checkmark	
80	Populus euphratica			30	W	1,3,5			\checkmark
81	Populus pruinosa			60	W	1,3,5,7			\checkmark
82	Salix magnifica			100	R	1,2,3			\checkmark
83	Salix polyadenia var.			60	1	367			
00	tschangbaischanica				-	0,0,1			,
84	Annanmocarya sinensis			50	W	3		\checkmark	
85	Juglans mandshurica			30	W	1,3		\checkmark	
86	Juglans regia			100	L	1,5,7		\checkmark	
87	Betula halophila				R	1		\checkmark	
88	Carpinus putoensis			100	R	1,7			
89	Carylus chinensis			100	W	1,3			\checkmark
90	Ostrya rehderiana			100	R	1,7			
91	Castanopsis concinna			100	L	1,3		\checkmark	
92	Castanopsis kawakamii			100	W	15			\checkmark
93	Cyclobalanopsis rex			30	L	1,3			
94	Fagus hayatae			100	L	3,12			\checkmark
95	Trigonobalanus doichangensis			80	L	1,3			
96	Celtis wightii			30	L	1,3,5			
97	Ptoroceltis tatarinowii			100	W	1,3			
98	Ulmus chenmoui			100	L	1,3			\checkmark
99	Ulmus elongata				W	3		\checkmark	
100	Ulmus gaussenii			100	R	3			
101	Zelkova serrata			70	W	1,3		\checkmark	
102	Rhoiptelea chiliantha			70	W			\checkmark	
103	Antiaris toxicaria			20	W	3			
104	Artocaarpus hypargyreus			100	W	3,5			\checkmark
105	Artocarpus lakoocha			20	W	1,3			\checkmark
106	Heliciopsis henryi			20	W	3			\checkmark
107	Helioia shweliensis			100	L	3			
108	Calligonum mongolicum			80	W	3,5		\checkmark	
109	Haloxylon ammodendron			50	W	1,3,5,7			\checkmark
110	Haloxylon persicum			20	L	1,3,5			
111	Gymnocarpos przewalskii			80	W	1,3,5			
112	Euptelea pleiosporma			50	W	1,3			\checkmark
113	Trochodendron aralioides			50	W	1,3		\checkmark	
114	Cercidiphyllum japonicum			50	W	1,3		\checkmark	

		A	Average	Description	Distribution:	Type of	Thre	at catego	ry
Na	Species	Area (na) of	number of	Proportion	widespread	threat			
NO.	(scientific name)	natural	trees per	OT	(W), rare (R),	(Code)	High	Medium	Low
		distribution	hectare	uistribution	or local (L)				
115	Paeonia lutea			100	W	3			\checkmark
116	Paeonia rockii			100	W	3, 7			\checkmark
117	Paeonia suffruticosa var. spontanea			100	R	3			\checkmark
118	Paeonia decomposita			100	L	3		\checkmark	
119	Alcimandra cathcartti			30	W	1,3			
120	Kmeria septentrionalis			100	L	1,3	\checkmark		
121	Liriodendron chinensis			60	W	3		\checkmark	
122	Magnclia zenii			100	R	3			\checkmark
123	Magnolia odoratissima			100	L	1,3		\checkmark	
124	Magnolia amoena			100	W	1,2,3			\checkmark
125	Magnolia cylindrica			100	W	1,2,3			\checkmark
126	Magnolia henryi			20	W	1,2,3			\checkmark
127	Magnolia Medicinalis			100	W	1,3		\checkmark	
128	Magnolia Medicinalis sp. biloba			100	W	1,3			\checkmark
129	Magnolia rostrata			50	L	3			\checkmark
130	Magnolia sieboldii			30	W	1,3,7			\checkmark
131	Magnolia sinensis			100	L	1,3			\checkmark
132	Magnolia wilsonii			100	W	1,3,7			\checkmark
133	Manglietia aromatica			100	L	3		\checkmark	
134	Manglietia decidua			100	L	1,3			
135	Manglietia grandis			100	L	3			\checkmark
137	Manglietia insignis			20	W	1,3			\checkmark
138	Manglietia megaphylla			100	R	3,7			\checkmark
139	Manglietia pachyphylla			100	L	1,3		\checkmark	
140	Manglietia patungensis			100	L	3		\checkmark	
141	Manglietiastrum sinicum			100	R	3			
142	Michelia chapensis			100	L	3		\checkmark	
143	Michelia hedyosperma			100	W	3,7		\checkmark	
144	Michelia longistaminafa			100	L	1,2,3		\checkmark	
145	Michelia wilsonii			100	W	3		\checkmark	
146	Parakmeria lotungensis			100	W	3			\checkmark
147	Parakmeria omeiensis			100	L	3			
148	Parakmeria yunnanensis			100	W	3			\checkmark
149	Paramichelia baillonii			50	W	3		\checkmark	
150	Tsoongiodendron odorum			70	W	3		\checkmark	
151	Tetracentron sinense			100	L	1,3		\checkmark	
152	Calycanthus chinensis			20	L	1,3,7		\checkmark	
153	Oncodostigma hainanensis			100	L	1,3,5		\checkmark	
154	Saccopetalum prolificum			100	L	1,3,7		\checkmark	

		Area (ha) of	Average	Droportion	Distribution:	Type of	Thre	at catego	ory
No	Species	Area (na) or	number of	Proportion	widespread	threat			
NO.	(scientific name)	distribution	trees per	distribution	(W), rare (R),	(Code)	High	Medium	Low
		aistribution	hectare	aistribution	or local (L)				
155	Horsfieldia hainanensis			100	L	1,3		\checkmark	
156	Horsfieldia pandurifolia			100	L	1,3			
157	Horsfieldia tetratepala			100	L	1,3		\checkmark	
158	Myristica yunnanensis			100	R	3,7			\checkmark
159	Alseodaphne hainanensis			70	W	3			
160	Cinnamomum camphora			40	W	1,3		\checkmark	
161	Cinnamomum japonicum			30	W	1,3		\checkmark	
162	Cinnamomum longepaniculatum			100	L	1,3		\checkmark	
163	Cinnamomum mairei			100	L	1,3,7			\checkmark
164	Cinnamomum micranthum			70	W	1,3			\checkmark
165	Cinnamomum rigidissimum			100	L	1,3		\checkmark	
166	Litsea auriculata			100	W	3,7			\checkmark
167	Litsea dilleniifolia			100	L	3,7			\checkmark
168	Litsea pierrei var.lobata			100	L	3			\checkmark
169	Neolitsea sericea			40	R	3		\checkmark	
170	Phoebe bournei				W	3,5		\checkmark	
171	Phoebe chekiangensis			100	W	1,3			
172	Phoebe nanmu			100	L	3			
173	Phoebe zhennan			100	W	1,3			
174	Bretschneidera sinensis			100	W	3	\checkmark		
175	Chunia bucklandiodes			100	L	1,3			
176	Disanthus cercidifolius var. longipes			100	L	1,12			
177	Semiliquidambar cathayensis			100	W	1,3			
178	Shaniodendron subaequale			100	L	1,3	\checkmark		
179	Sinowilsonia henryi			100	W	1,3			
180	Eucommia ulmoides			100	W	3			
181	Malus komarovii			80	L	3, 5			
182	Malus sieversii			60	L	3,5			
183	Malus sikkimensis			30	W	3,7			
184	Prunus mongolica			50	W	3,7			
185	Rosa odorata			100	W	1,3			
186	Rosa rugosa			25	W	1,3			
187	Sorbus amabilis			100	W	1			
188	Acrocarpus fraxinifolius			30	L	1,3			
189	Ammopiptanthus mongolicus			50	W	1,3			\checkmark
190	Amoopiptanthus nanus			50	L	1,3		\checkmark	
191	Dalbergia fusca			100	L	3,5		\checkmark	
192	Dalbergia odorifera			100	L	3		\checkmark	
193	Gleditsia vestita			100	R	1,5		\checkmark	

		A	Average	Description	Distribution:	Type of	Thre	at catego	ory
Na	Species	Area (na) or	number of	Proportion	widespread	threat			
NO.	(scientific name)	natural	trees per	Ol	(W), rare (R),	(Code)	High	Medium	Low
		aistribution	hectare	uistribution	or local (L)				
194	Ormosia henryi			70	W	1,3			
195	Ormosia hosiei			100	W	1,3		\checkmark	
196	Ormosia howii			100	R	1,7		\checkmark	
197	Pterocarpus indicus			50	W	1,3			
198	Zenia insignis			100	W	3			
199	Tetraena mongolica			100	L	3,7			
200	Phellodendron amurense			30	W	3			
203	Toona sureni			50	W	3			
204	Cephalomappa sinensis			100	W	1,3			\checkmark
205	Cleidiocarpon cavaleriei			100	W	1,3			\checkmark
206	Croton laui			100	L	1,3			\checkmark
207	Deutzisanthus tonkinensis			30	L			\checkmark	
208	Mangifor sylvatica			20	W	1,3			\checkmark
209	Bhesa robusta				R	3			
210	Tapiscia sinensis			100	W	3			\checkmark
211	Acer catalpifolium			100	L	1,3,5			
212	Acer miaotaiense			100	W	3			
213	Acer yangjuechi			60	R	3			
214	Dipteronia dyerana				L	3			
215	Dipteronia sinensis			100	W	1,3			\checkmark
216	Aesculus wangii			100	L	1,3,7			
217	Dimocarpus longan			100	W	1,3			
218	Eurycorymbus cavaleriei			100	W	1, 3			
219	Handeliodendron bodinieri			100	W	3			
220	Paranephelium hainanensis			100	L	3, 5			
221	Pometia tomentosa			20	W	3			\checkmark
222	Xerospermum bonii			30	W	1,3,7			
223	Berchemiella wilsonii			100	R	1,2			
224	Burretiodendron esquirolii			100	W	1,3			
225	Excentrodendron hsienmu			70	W	1,3			
226	Craigia kwangsiensis			70	R	3			
227	Craigia yunnanensis			80	W	3			
228	Tilia amurensis			80	W	1,3		\checkmark	
229	Firmiana danxiaensis			100	L	1,3		\checkmark	
230	Firmiana hainanensis			100	L	1,3		\checkmark	
231	Firmiana major			100	L	3		\checkmark	
232	Heritiera parvifolia			100	L	3		\checkmark	
233	Pterospermum kingtungense			100	L	1,3		\checkmark	
234	Apterosperma oblata			100	L	3		\checkmark	

			Average	D (1	Distribution:	Type of	Thre	at catego	ry
N	Species	Area (na) of	number of	Proportion	widespread	threat			
NO.	(scientific name)	natural	trees per	OT	(W), rare (R),	(Code)	High	Medium	Low
		distribution	hectare	distribution	or local (L)				
235	Camellia grijsii			100	W	1,3			
236	Camellia chrysantha			50	L	1,3,7			
237	Camellia crapnelliana			100	W	3			
238	Camellia ranthamiana			100	R	3		\checkmark	
239	Camellia reticulata			100	W	3		\checkmark	
240	Camellia sinensis var. assamica			25	W	3,6			
241	Erythrophleum fordii			70	W	3		\checkmark	
242	Euryodendron excelsum			100	R	3			
243	Stewartia sinensis			100	W	3			\checkmark
244	Madhuca hainanensis			100	L	3			
245	Garcinia paucinervis			60	L	3	\checkmark		
246	Tamarix taklamakanensis			100	R	13			\checkmark
247	Dipterocarpus retusus			30	W	1,3	\checkmark		
248	Dipterocarpus gracilis			50	R	1,7			\checkmark
249	Hopea chinensis			100	R	1,3	\checkmark		
250	Hopea exalata			100	R	3			
251	Hopea hainanensis			100	L	1,3	\checkmark		
252	Hopea mollissima			100	L	3,7		\checkmark	
253	Parashorea chinensis			100	L	15	\checkmark		
254	Shorea assamica			30	R	1,3			
255	Vatica guangxiensis			100	R	15			
256	Vatica xishuangbannaensis			100	R	1,3			
257	Homalium laeticum var. glabratum			100	L	3,12			\checkmark
258	Taraktogenos annamensis			25	L	3,5			
259	Tetrameles nudiflora			50	L	1,3			
260	Aquilaria sinensis			100	W	3			\checkmark
261	Elaeagnus mollis			100	L	1,3		\checkmark	
262	Lagerstroemia intermedia			70	L	1, 3			\checkmark
263	Crypteronia paniculata			20	L	1,3			\checkmark
264	Pellacalyx yunnanensis			100	R	3			\checkmark
265	Camptotheca acuminata			100	W	1,3		\checkmark	
266	Davidia involucrata			100	W	1,3,7			
267	Davidia involucrata var. vilmoiniana			100	L	1,3		\checkmark	
268	Nyssa yunnanensis			100	L	3			
269	Anogeissus acuminata var.			20	I	1.3.7			
	lanceolata				-	.,3,1			,
270	Lumnitzera littorea			30	R	3		\checkmark	
271	Terminalia myriocarpa			20	W	1,2,3		\checkmark	
272	Acanthopanax senticosus			100	W	1,3		\checkmark	

		Arres (he) of	Average	Drevention	Distribution:	Type of	Thre	at catego	ory
Na	Species	Area (ha) of	number of	Proportion	widespread	threat			
NO.	(scientific name)	natural	trees per	OT	(W), rare (R),	(Code)	High	Medium	Low
		aistribution	hectare	aistribution	or local (L)				
273	Empetrum sibiricum			20	L	3		\checkmark	
274	Phyllodoce caerulea			20	L	1			
275	Rhododendron aureum			100	L	1,3		\checkmark	
276	Rhododendron cyanocarpum			100	L	1,3		\checkmark	
277	Rhododendron fictolacteum			100	L	1,7		\checkmark	
278	Rhododendron haematodes			100	L	3		\checkmark	
279	Rhododendron jucundum			100	R	1,3		\checkmark	
280	Rhododendron protistum var.			100	P	15	al		
200	giganteum			100	N	15	v		
281	Rhododendron rex			100	L	3,12		\checkmark	
282	Rhododendron sulphureum			100	R	15		\checkmark	
283	Madhuca pasquieri			100	W	1, 3		\checkmark	
284	Halesia macgregorii			100	W	3,7			
285	Pterostyrax psilophylla			100	W	1,3			
286	Rehderodendron macrocarpum			100	W	1,3			
287	Sinojackia dolichocarpa			100	R	3			
288	Sinojackia xylocarpa			100	L	3			
289	Fraxinus mandshurica			25	W	1,3			
290	Syringa pinnatifolia			100	W	3,7			
291	Syringa pinnatifolia var. alashanica			100	R	3			
292	Gmelina arborea			20	L	1,3,5		\checkmark	
293	Gmelina hainanensis			70	W	3			
294	Premna szemaoensis			100	L	1,3			
295	Dunnia sinensis			100	L	1,3			
296	Emmenopterys henryi			100	W	1,3,7		\checkmark	
297	Heptacodium miconioides			100	L	3		\checkmark	
298	Kolkwitzia amabilis			100	W	1,3,5			
299	Leucomeris decora			30	W	3			
300	Nouelia insignis			100	W	3			
301	Qiongzhuea tumidinosa			100	L	1,3			
302	Caryota obtusa			25	W	3,7		\checkmark	
303	Chuniophoenix hainanensis			100	L	1,3		\checkmark	
304	Chuniophoenix nana			100	R	3			
305	Nypa fruticans			30	W	3			
306	Trachycarpus nana			100	L	1,3			
307	Laportea urentissima			60	L	1,3			

Type of threat:

1) Forest cover reduction and degradation	9) Acidification of soil and water
2) Forest ecosystem diversity reduction and degradation	10) Pollutant emissions
3) Unsustainable logging	11) Pests and diseases
4) Management intensification	12) Forest fires
5) Competition for land use	13) Drought and desertification
6) Urbanization	14) Rising sea level
7) Habitat fragmentation	15) Other (Specify)

8) Uncontrolled introduction of alien species

Data source: The list of rare and endangered species in China (1987); The list of wild plants wth national priority for protection (1999); The inventory list of wild plants with protection priority given by the SFA (2004).

Threat categories:

Level 1: High – threatened throughout species range within the country;

Level 2: Medium - threatened in at least 50% of range within country;

Level 3: Low - threatened in less than 50% of range within country.

Species		Total	Quantity of seed	Quantity of seed from	Quantity that is
Scientific	Native (N)	quantity of	from documented	tested provenances	genetically
name	or Exotic	seed used	sources	(provenance trials	improved (from
	(E)	(Kg)	(provenance/ seed	established and	seed orchards)
			zones delimited)	evaluated)	

Table 8a	Annual quantit	ty of seed	produced i	n China
	7 unitaal quanta	.y 01 0000	produced	

Note: No data available for this table.

Table 8b Annual number of seedlings (or vegetative propagules) planted in China

Species	5		Quantity of	Quantity of		
Scientific name	Native (N) or Exotic (E)	Total quantity of seedlings planted	seedlings from documented sources (provenance/ seed zones delimited)	seedlings from tested provenances (provenance trials established and evaluated)	Quantity of vegetative reproductive material used.	Quantity of seedlings that are genetically improved

Note: No data available for this table.

N -	Creation	Native (N) or	Morphological	Adaptive and	Molecular
NO.	Species	exotic(E)	traits	production	characterization
1	Ginkgo biloba	N			V
2	Abies beshanzuensis	N			\checkmark
3	Abies ziyuanensis	N			\checkmark
4	Larix gmelinii	N	\checkmark		\checkmark
5	Larix kaempferi	E			
6	Larix olgensis	N	\checkmark		\checkmark
7	Larix principis-rupprechtii	N	\checkmark		\checkmark
8	Larix sibirica	N			
9	Picea crassifolia	N	\checkmark		\checkmark
10	Picea glauca	N			
11	Picea koraiensis	N	\checkmark		\checkmark
12	Picea likiangensis	N	\checkmark		
13	Picea meyeri	N	\checkmark		\checkmark
14	Pinus armandii	N			\checkmark
15	Pinus bungeana	N	\checkmark		\checkmark
16	Pinus caribaea	E			
17	Pinus densiflora var. ussuriensis	N			
18	Pinus elliottii	E			
19	Pinus koraiensis	N	\checkmark		\checkmark
20	Pinus massoniana	N			\checkmark
21	Pinus pumila	N			
22	Pinus sylvestris	E			
23	Pinus sylvestris var. mongolica	N			
24	Pinus tabulaeformis	N	\checkmark		\checkmark
25	Pinus taeda	E			
26	Pinus taiwanensis	N	\checkmark		\checkmark
27	Cryptomeria fortunei	N			
28	Cunninghamia lanceolata	N			\checkmark
29	Taiwania cryptomerioides	N	\checkmark		\checkmark
30	Fokienia hodginsii	N			
31	Plctycladus orientalis	N	\checkmark		\checkmark
32	Sabina vulgaris	N			\checkmark
33	Nageia nagi	N			
34	Taxus chinensis	N			\checkmark
35	Torreya grandis	N	\checkmark		\checkmark

Table 9 List of forest species for which genetic variability has been evaluated in China

No	Spacios	Native (N) or	Morphological	Adaptive and	Molecular
NU.	Species	exotic(E)	traits	production	characterization
36	Torreya grandis 'Merrillii'	N			
37	Casuarina equisetifolia	E		\checkmark	
38	Populus davidiana	N			
39	Populus simonii	N			
40	Populus tomentosa	Ν	\checkmark		
41	Carya cathayensis	N			
42	Cyclocarya paliurus	N	\checkmark		
43	Juglans mandshurica	Ν	\checkmark	\checkmark	
44	Juglans regia	N		\checkmark	
45	Alnus cremastogyne	N		\checkmark	
46	Betula alnoides	N		\checkmark	
47	Betula luminifera	N			
48	Castanea henryi	N			
49	Castanea mollissima	N			
50	Castanopsis sclerophylla	N			
51	Quercus acutissima	N			
52	Quercus liaotungensis	N			
53	Quercus mongolica	N		\checkmark	
54	Quercus variabilis	N			
55	Ulmus pumila	N		\checkmark	
56	Liriodendron chinensis	N		\checkmark	
57	Michelia chapensis	N			
58	Lindera aggregata	N			
59	Prunus amygdalus	N			
60	Acacia auriculaeformis	E		\checkmark	
61	Acacia mangium	E		\checkmark	
62	Caragana Korshinskii	N			
63	Caragana microphylia	N			
64	Ormosia hosiei	N			
65	Robinia pseudoacacia	E		\checkmark	
66	Idesia polycarpa	N			
67	Jatropha curcas	N/E			
68	Pistacia chinensis	N			
69	Dipteronia sinensis	N			
70	Tilia amurensis	N			
71	Camellia oleilata	N			

Na	Species	Native (N) or	Morphological	Adaptive and	Molecular
NO.	Species	exotic(E)	traits	production	characterization
72	Schima superba	N			\checkmark
73	Tamarix chinensis	N			\checkmark
74	Hippophae rhamnoides spp. sinensis	N			
75	Lagerstroemia indica	N			
76	Davidia involucrata	N			
77	Eucalyptus camaldulensis	E		\checkmark	
78	Eucalyptus grandis	E		\checkmark	
79	Eucalyptus smithii	E		\checkmark	
80	Syringa oblata	N	\checkmark		

Data source: Fulltext Database of Chinese Journals; Full-text database of China's Ph.D. Theses;

Full-text database of outstanding theses of master degree.

	Species	Purpose for	Number of populations		Total Area
No.	(acientific name)	Pulpose for	(stands) or trees	Location (Province)	(ba)
	(scientific fiame)	conservation	comserved		(11d)
1	Ginkgo biloba	Threatened	242 trees, all protected	Zhejiang	35
2	Abies beshanzuensis	Critically endangered	Only 3trees, all protected	Zhejiang	
2		Thursday	233554 trees, about 10%		4000
3	Ables chinslensis	Inreatened	protected	Henan, Hubei, Chongqing, Shangxi, Gansu	1096
4	Abies	Thursday	17680 trees, majority	Quintau	00
4	fanjingshanensis	Inreatened	protected	Guiznou	80
5	Abies yuanbaoshanensis	Critically endangered	589 trees, all protected	Guangxi	4
6	Abies ziyuanensis	Threatened	1979 trees, about 30% protected	Jiangxi, Hunan, Guangxi	100
7	Cathaya argyrophylla	Threatened	4484 trees, most protected	Hunan, Guangxi, Chongqing, Guizhou	6024
8	Keteleeria hainanensis	Threatened	11455 trees, partly protected	Henan	2290
9	Keteleeria pubescens	Threatened	8242 trees, partly protected	Guangxi, Guizhou	94
10	Larix chinensis	Threatened	4631538 trees, majority protected	Shangxi	6350
11	Larix mastersiana	Threatened	78539 trees, partly protected	Sichuan	296
12	Picea brachytyla var. complanata	Precious timber	1918758 trees, A small amount protected	Sichuan, Yunnan, Tibet	155455
13	Picea neoveotchii	Threatened	96343 trees, partly protected	Henan, Hubei, Chongqing, Shangxi, Gansu	529
14	Pinus dabeshanensis	Threatened	353 trees, mostly protected	Anhui, Henan, Hubei	107
15	Pinus densiflora var. ussuriensis	Threatened	1182832 trees, majority protected	Heilongjiang	2484
16	Pinus koraiensis	Precious timber	229401855 trees, A small amount protected	Liaoning, Jilin, Heilongjiang	3E+06
17	Pinus kwangtungensis	Threatened	748790 trees, A small amount protected	Jiangxi, Hunan, Guangdong, Guangxi, Henan, Guizhou	5527
18	Pinus squamaia	Critically endangered	29 trees, all protected	Yunnan	0.5
19	Pinus sylvestriformis	Threatened	109726 trees, majority protected	Jilin	593
20	Pinus wangii	Critically endangered	87 trees, all protected	Yunnan	8
21	Pseudolarix amabilis	Threatened	412715 trees, partly protected	Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Henan, Hubei, Hunan, Chongqing	39217
22	Pseudotsuga	Threatened	205307 trees, partly	Cuerenti Cuisteu	407
22	brevifolia	Intreateneo	protected	Guangxi, Guizhoù	427
23	Pseudotsuga forrestii	Gradually dangerous	4300004 trees, partly protected	Yunnan, Tibet	119646
			208859 trees partly	Zhejiang, Anhui, Fujian, Jiangxi, Hubei,	
24	Pseudotsuga sinensis	Threatened	protected	Hunan, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shangxi	5283
05	Amentotaxus	Threaters d	26090 trees, mostly	Cuizhou Virran	400
25	yunnanensis	Inreateneo	protected	Guiznou, Yunnan	489
26	Glyptostrobus pensilis	Threatened	285 trees, mostly protected	Fujian, Jiangxi, Hunan, Guangdong, Guangxi, Yunnan	1

Table 10 Target forest species included within in situ conservation programmes/units

	Creation	Durmage for	Number of populations		
No.	Species	Purpose for	(stands) or trees	Location (Province)	Iotal Area
	(scientific name)	conservation	comserved		(ha)
27	Metasequoia glyptostroboides	Threatened	5681 trees, all protected	Hubei, Hunan, Chongqing	6000
28	Taiwania cryptomerioides	Threatened	55275 trees, majority protected	Fujian, Hubei, Guizhou, Yunnan	2110
29	Calocedrus macrolepis	Gradually dangerous	196632 trees, Less than 10% protected	Guangxi, Henan, Guizhou, Yunnan	166284
30	Cupressus chengiana	Gradually dangerous	2374962 trees, partly protected	Sichuan, Gansu	14317
31	Cupressus gigantea	Threatened	44020 trees, mostly protected	Tibet	18650
32	Fokienia hodginsii	Threatened	654789 trees, partly protected	Zhejiang, Fujian, Jiangxi, Hunan, Guangdong, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan	11585
33	Thuja koraiensis	Threatened	2582 trees, mostly protected	Jilin, Heilongjiang	
34	Cephalotaxus Ianceolata	Threatened	6754 trees, mostly protected	Yunnan	439
35	Cephalotaxus hainanensis	Threatened	141985 trees, partly protected	Guangdong, Guangxi, Henan, Yunnan, Tibet	14316
36	Cephalotaxus oliveri	Threatened	3312207 trees, About 10% protected	Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan	1362
37	Pseudotaxus chienii	Threatened	245114 trees, partly protected	Zhejiang, Fujian, Jiangxi, Hunan, Guangdong, Guangxi	436
38	Taxus cuspidata	Threatened	42675 trees, majority protected	Liaoning, Jilin, Heilongjiang	7003
39	Taxus fuana	Threatened	33975 trees, mostly protected	Tibet	4350
40	Taxus wallichiana	Threatened	4302170 trees, mostly protected	Sichuan, Yunnan, Tibet	236872
41	Taxus chinensis var. mairei	Threatened	1258778 trees, mostly protected	Shanxi, Zhejiang, Anhui, Fujian, Jiangxi, Guangdong, Guangxi, Hubei, Hunan, Chongqing, Sichuan, Guizhou, Yunnan, Shangxi	39639
42	Taxus chinensis	Threatened	806903 trees, majority protected	Zhejiang, Anhui, Henan, Hubei, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shangxi, Gansu	6787
43	Torreya fargesii	Threatened	53454 trees, majority protected	Hubei, Hunan, Chongqing, Sichuan, Guizhou, Shangxi, Gansu	1114
44	Torreya grandis	Threatened	764990 trees, A small amount protected	Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Hunan, Guizhou	94037
45	Torreya jackii	Threatened	703874 trees, partly protected	Zhejiang, Fujian, Jiangxi	2526
46	Torreya yunnanensis	Threatened	8938950 trees, A small amount protected	Yunnan	19133
47	Chosenia arbutifolia	Gradually dangerous	4287312 trees, Less than 10% protected	Inner Mongolia, Liaoning, Jilin, Heilongjiang	73121

	Species	Durnage for	Number of populations		Total Area
No.	Species	Purpose for	(stands) or trees	Location (Province)	Iotal Area
	(scientific name)	conservation	comserved		(na)
48	Annamocarya sinensis	Threatened	472 trees, mostly protected	Hunan, Guangxi, Guizhou, Yunnan	18
			20400040 trace A email	Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia	
49	Juglans mandshurica	Precious timber	39490648 trees, A small	Liaoning, Jilin, Heilongjiang, Shandong,	3E+06
			amount protected	Henan, Shangxi	
50	1	Thursday	35165 trees, majority	Lance Margarite That Mailance	000
50	Jugians regia	Inreatened	protected	Inner Mongolia, Tibet, Xinjiang	262
51	Betula hailophila	Critically endangered	282 trees, all protected	Xinjiang	0.5
52	Carpinus putoensis	Threatened	Only 1 trees, protected	Zhejiang	
53	Carpinus tiantaiensis	Threatened	Only 21 trees, all protected	Zhejiang	
54	Ostrya rehderiana	Threatened	5 trees, all protected	Zhejiang	
		T I ()	109434 trees, partly		0.40
55	Castanopsis concinna	Inreatened	protected	Guangdong, Guangxi	313
50	Trigonobalanus	Thursday	330544 trees, A small	Marana.	400.4
50	doichangensis	Inreatened	amount protected	Yunnan	1324
				Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi,	
57	Zlkova serrata	Precious hardwood	amount protocted	Hubei, Hunan, Guangdong, Guangxi,	167792
			amount protected	Guizhou, Yunnan, Tibet	
58	Ulmus elongate	Threatened	1429 trees, partly protected	Zhejiang, Anhui, Fujian, Jiangxi	118
50	Gymnocarpos	Gradually dangerous	175072019 trees, A small	Innor Mongolia, Gansu, Ningvia, Xinijang	15+06
59	przewalkii	Gradually dangerous	amount protected		12+00
	Cercidinhyllum		17/908 trees Less than one	Shanxi, Zhejiang, Jiangxi, Henan, Hubei,	
60	iaponicum	Threatened	third were protected	Hunan, Chongqing, Sichuan, Guizhou,	3342
	aponicum		tillid were protected	Yunnan, Shangxi, Gansu	
61	Alcimandra cathcardii	Gradually dangerous	133078 trees, The majority	Yunnan Tihet	56852
01		Craddaily dailycrous	of them were protected		50052
62	Kmerria	Threatened	4288 trees partly protected	Guanoxi Guizhou	120
02	septentrionalis	modened			120
		Precious medicinal	849556 trees. The majority	Zhejiang, Anhui, Fujian, Jiangxi, Hubei,	
63	Magnolia Medicinalis	materials	of them were protected	Hunan, Guangdong, Guangxi, Guizhou,	116568
				Yunnan, Shangxi	
64	Magnolia rostrata	Threatened	220685 trees, The majority	Yunnan	38140
	Ŭ		of them were protected		
65	Manglietia deciduas	Threatened	251 trees, partly protected	Jiangxi	
66	Manglietiastrum	Threatened	6 trees, All protected	Yunnan	1
	sinicum		· · ·		
67	Parakmeria omeiensis	Critically endangered	20 trees, All protected	Sichuan	
68	Paramichelia baillonii	Gradually dangerous	347384 trees, The majority	Yunnan	36156
			of them were protected		
69	Tsoongiodendron	Threatened	6548 trees.	Fujian, Jiangxi, Hunan, Guangdong, Guangxi,	490
	odorum		,	Henan, Guizhou, Yunnan	
70	Illicium difenapi	Threatened	517919 trees, A small	Guangxi	87745
-	Ur.		amount protected	, , , , , , , , , , , , , , , , , , ,	-
71	Teracentron sinense	Threatened	727563 trees, A small	Henan, Hubei, Hunan, Chongqing, Sichuan,	74468
			amount protected	Guizhou, Yunnan, Tibet, Shangxi, Gansu	
72	Calycanthus chinensis	Threatened	1732214 trees, partly	Jiangsu, Zhejiang	2443

	Species	Durnage for	Number of populations		Total Area
No.	(acientific name)	Purpose for	(stands) or trees	Location (Province)	(he)
	(scientine name)	conservation	comserved		(11d)
			protected		
70	Oncodostigma	Threatened	1500 trace meetly protected	llenen	200
13	hainanense	Inteatened	1500 trees, mostly protected	nenan	299
74	Horsfieldia	Threatened	1191 trace mostly protocted	Cuanavi Hanan	100
/4	hainanensis	Inteatened	1401 liees, mosliy protected	Gualiyxi, Henan	103
75	Horsfieldia tetratepala	Threatened	4101 trees, partly protected	Yunnan	2981
76	Alseodaphne	Threatened	199520 trees, The majority	Honon	11675
70	hainanensis	meatened	of them were protected	Hellan	11075
	Cinnamomum		10/60205 trees A small	Shanghai, Zhejiang, Anhui, Jiangxi, Hubei,	
77	camphora	Threatened	amount protected	Hunan, Guangdong, Guangxi, Chongqing,	23645
	campnora		amount protected	Sichuan, Guizhou, Yunnan, Henan	
78	Cinnamomum	Threatened	30876 trees partly protected	Shanghai Zheijang	83
10	japonicum	modened			00
79	Cinnamomum	Threatened	16971 trees partly protected	Sichuan Shanoxi Gansu	389
10	longepaniculatum	modened		Cionadi, Changai, Canoa	000
80	Cinnamomum	Threatened	111264 trees, A small	Guangxi Henan	10109
	rigidissimum	modelloa	amount protected		10100
81	Neolitsea sericea	Threatened	47494 trees, A small amount	Shanghai Zheijang	74
01		modened	protected		14
82	Phoebe bournei	Threatened	178750 trees, A small	Zhejiang, Fujian, Jiangxi, Hubei, Hunan,	27488
02		modelloa	amount protected	Guangdong, Guangxi, Guizhou	21100
83	Phoebe chekiangensis	Threatened	36664 trees, partly protected	Jiangxi, Zhejiang, Fujian	75
84	Phoebe nanmu	Threatened	57500 trees, The majority of	Yunnan Tibet	2847
•			them were protected		
85	Phoebe zhennan	Threatened	45477 trees partly protected	Henan, Hubei, Hunan, Chongqing, Sichuan,	646
				Guizhou	0.0
	Bretschneidera		22356 trees. The maiority of	Zhejiang, Fujian, Jiangxi, Hubei, Hunan,	
86	sinensis	Threatened	them were protected	Guangdong, Guangxi, Chongqing, Sichuan,	1500
				Guizhou, Yunnan	
87	Chunia bucklandioides	Threatened	515471 trees, partly	Henan	5795
			protected		
88	Semiliquidambar	Threatened	123745 trees, partly	Fujian, Jiangxi, Hunan, Guangdong, Guangxi,	9757
	cathayensis		protected	Henan, Guizhou	
89	Shaniodendron	Threatened	8245 trees, The majority of	Jiangsu, Zhejiang, Anhui	57
	subaequale		them were protected		
90	Eucommia ulmoides	Threatened	10352 trees, A small amount	Zhejiang, Anhui, Jiangxi, Henan, Hubei,	166
			protected	Hunan, Sichuan	
91	Dalbergia fusca	Threatened	205450 trees, partly	Yunnan	6312
	Ŭ		protected		
92	Dalbergia odorifera	Threatened	1463399 trees, mostly	Henan	103619
			protected		-
93	Gleditsia vestita	Critically endangered	2 trees, All protected	Hunan	
			564246 trees, A small	Zhejiang, Anhui, Fujian, Jiangxi, Hubei,	
94	Ormosia henryi	Threatened	amount protected	Hunan, Guangdong, Guangxi, Guizhou,	606
			· ·	Yunnan	

		_	Number of populations		
No.	Species	Purpose for	(stands) or trees	Location (Province)	Total Area
	(scientific name)	conservation	comserved	X Z	(ha)
				Zheijang, Fujian, Jjanoxi, Henan, Hubei,	
95	Ormosia hosiei	Threatened	70797 trees, mostly	Guangxi Chongging Sichuan Guizhou	372
00		moutoriou	protected	Shangyi Gansu	012
			100705 tases mostly.	Shangxi, Gansu	
96	Ormosia howii	Threatened	120765 trees, mostly	Guangdong, Henan	2636
			protected		
97	Pterocarpus indicus	Critically endangered	50, All protected	Yunnan	27
98	Sindora glabra	Threatened	184117 trees, partly	Henan	16906
00	Cinacia glabia	moutoriou	protected	Tionan	10000
00	Zania insiania	Threatened	1904956 trees, partly	Hunan, Guangdong, Guangxi, Guizhou,	00004
99	zenia insignis	Inreatened	protected	Yunnan	22284
			49046747 trees, The		
100	Tetraena mongolica	Threatened	majority of them were	Inner Mongolia, Ningxia	143969
	Jerre a general de la companya de la		protected		
	Phellodendron		128638291 trees A small	Reijing Tianiin Hebei Inner Mongolia	
101		Precious hardwood	amount protocted	Lipping, Harijin, Hebel, Inner Mongolia,	3E+06
102	Phellodendron	Threatened	28380 trees, A small amount	Hubei, Hunan, Sichuan, Shangxi	182
	chinense		protected		
103	Amoora dasvclada	Threatened	299217 trees, The majority	Henan Yunnan	21437
100		moutoriou	of them were protected		21101
	Toono ciliato var		203630 troop partly	Zhejiang, Anhui, Fujian, Jiangxi, Hubei,	
104		Threatened	200059 trees, parity	Guangdong, Guangxi, Henan, Sichuan,	4841
	pubescens		protected	Guizhou, Yunnan	
				Fujian, Hubei, Hunan, Guangdong, Guangxi,	
105	Toona sureni	Threatened	608136 trees, A small	Henan, Chongging, Sichuan, Guizhou,	167690
			amount protected	Yunnan. Tibet	
	Deutzianthus		40844 trees. The majority of		
106	tonkinensis	Threatened	them were protected	Guangxi, Yunnan	3155
107		Threatened		Cuanadana Cuanavi Hanan	7
107	nex kaushue		227 trees, All protected	Guanguong, Guangxi, Henan	1
108	Bhesa robusta	Critically endangered	10 trees, All protected	Guangxi	8
109	Acer catalpifolium	Critically endangered	53 trees, mostly protected	Sichuan	
110	Acer yangjuechi	Critically endangered	Only 4 trees, All protected	Zhejiang	
111	Dipteronia dyerana	Threatened	1807 trees, mostly protected	Guizhou, Yunnan	21
440	D. 1	T I 1	1260645 trees, A small		40000
112	Dimcarpus longan	Inreatened	amount protected	Guangdong, Henan	16933
	Handeliodendron		18854 trees, A small amount		
113	bodinieri	Threatened	protected	Guangxi, Guizhou	979
	Litchi chinensis var		444800 trees partly		
114		Threatened	nrotected	Guangdong, Guangxi, Henan	23957
	euspomanea				
115	Nephelium topengii	Gradually dangerous	2421880 trees, A small	Guangxi, Henan	92500
			amount protected		
116	Paranephelium	Threatened	83 trees, All protected	Henan	2
	hainanensis		-, _r		
117	Burretiodendron	Threatened	50751 trees, majority	Guangyi Guizhou Yunnan	547
	esquirolii	moderiou	protected		0.11
118	Excentrodendron	Threatened	124882 trees, About 30%	Guangxi, Yunnan	3427

			Number of populations		-
No.	Species	Purpose for	(stands) or trees	Location (Province)	Iotal Area
	(scientific name)	conservation	comserved		(ha)
	hsienmua		protected		
119	Craigia yunanensis	Threatened	Only 6 trees, All protected	Guangxi, Guizhou, Yunnan	3
400		Thursday	31660 trees, A small amount		440
120	Hainania tricnosperma	Inreatened	protected	Guangxi, Henan	446
101		Cradually democratic	510126250 trees, A small	Beijing, Tianjin, Hebei, Inner Mongolia,	75.00
121	nna amurensis	Gradually dangerous	amount protected	Liaoning, Jilin, Heilongjiang, Shandong	7E+06
400		Thursday	21777 trees, majority		40
122	Sinia modoleuca	Inreatened	protected	Guangdong, Guangxi	18
400	Erythropsis	T I 1 1			
123	kwangsiensis	Inreatened	3 trees, All protected	Guangxi	
124	Firmiana danxiaensis	Threatened	8 trees, All protected	Guangdong	
405	F '	Thursday	310140 trees, partly		40474
125	Firmiana nainanensis	Inreatened	protected	Henan	19171
400		Thursday	928532 trees, A small		20070
126	Heritiera parvitolia	Inreatened	amount protected	Henan	30879
107	Paradombeya	Threatened	74189 trees, mostly	Vinnen	200
127	sinensis	Inreatened	protected	funnan	322
100	Pterospermum	Critically and an arrad	25 trace All protected	Vienen	2
120	kingtungense	Chucally endangered	25 trees, All protected	funnan	2
100	Pterospermum	Threatened	134093 trees, mostly	Vinnen	5040
129	menglunense	Inreatened	protected	funnan	5240
130	Camallia aunhlahia	Throatopod	151020 trees, majority	Guanavi	1210
130	Carriellia euprilebia	Theatened	protected	Guangxi	1219
131	Camellia	Threatened	360 trees. All protected	Guanoxi	1
101	impressinervis	medened		Guargai	1
132	Camellia nitidissima	Threatened	169984 trees, majority	Guanoxi	1366
102		modened	protected	Guargai	1000
133	Camellia pinggaoensis	Critically endangered	600 trees. All protected	Guanoxi	1
100	var. terminalis	ondony ondangorod		Guargai	
134	Camellia pubipetala	Critically endangered	278 trees, All protected	Guangxi	1
135	Enthrophleum fordii	Threatened	33243 trees, About 1/3	Fujian Guangdong Guangxi Guizhou	372
100	Liyanopinoannioran	modened	protected		012
136	Euryodendron	Threatened	13 trees All protected	Guanadona Guanaxi	
100	excelsum	modello	10 1000,7 11 prototou		
137	Garcinia paucinervis	Threatened	37863 trees, partly protected	Guangxi, Yunnan	953
138	Dipterocarpus retusus	Threatened	24641 trees, partly protected	Yunnan	142
139	Hopea chinensis	Threatened	5162 trees, mostly protected	Guangxi	84
140	Honea exalata	Threatened	2395592 trees, partly	Yunnan Henan	305
טדי		in caloned	protected	rannan, nonall	000
141	Hopea hainanensis	Threatened	89344 trees, partly protected	Henan	8820
142	Parashorea chinensis	Threatened	75297 trees, mostly	Guanoxi Yunnan	611
172		in caloned	protected	Saanga, ruman	
143	Vatica guangxiensis	Critically endangered	65 trees, All protected	Guangxi	
1//	Vatica astrotricha	Threatened	6548043 trees, A small	Henon	116581
144	งฉแบล สอแปนไปเปล	rinedleneu	amount protected	I ICIIAII	110301

No.	Species (scientific name)	Purpose for conservation	Number of populations (stands) or trees comserved	Location (Province)	Total Area (ha)
145	Tetrameles nudiflora	Threatened	20723 trees, majority protected	Yunnan	2140
146	Aquilaria sinensis	Threatened	531092 trees, majority protected	Guangdong, Guangxi, Henan, Yunnan	25264
147	Sonneratia hainanensis	Threatened	20 trees, mostly protected	Henan	
148	Davidia involucrata	Threatened	1716437 trees, mostly protected	Hubei, Hunan, Chongqing, Sichuan, Guizhou, Yunnan, Shangxi, Gansu	35406
149	Nyssa yunnanensis	Threatened	4 trees, All protected	Yunnan	
150	Calycopteris floribunda	Threatened	1403 trees, mostly protected	Yunnan	5
151	Terminalia myriocarpa	Threatened	164041 trees, A small amount protected	Guangxi, Yunnan, Tibet	31358
152	Acanthopanax senticosus	Gradually dangerous	5899000 trees, A small amount protected	Beijing, Shanxi, Hebei, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Henan, Shangxi	6E+06
153	Rhododendron protistum var. giganteum	Threatened	2996 trees, majority protected	Yunnan	240
154	Lumnitzera littorea	Threatened	962 trees, mostly protected	Henan	98
155	Madhuca hainanensis	Threatened	537880 trees, partly protected	Henan	25000
156	Madhuca subquincuncialis	Threatened	6429 trees, majority protected	Guangdong, Guangxi, Yunnan	195
157	Styrax dolichocarpa	Threatened	475 trees, mostly protected	Hunan	7
158	Fraxinus mandschurica	珍贵, Gradually dangerous	244176713 trees, A small amount protected	Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Henan, Shangxi, Gansu, Ningxia	4487726
159	Gmelina hainanensis	Threatened	339333 trees, A small amount protected	Guangdong, Guangxi, Henan	18159
160	Emmenopterys henryi	Gradually dangerous	810031 trees, About 1/10 protected	Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Henan, Hubei, Hunan, Guangdong, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shangxi, Gansu	170850
161	Antirhea chinensis	Threatened	61207 trees, partly protected	Guangdong, Henan	175
162	Morinda Medicinalis	Threatened	329533 trees, partly Fujian, Jiangxi, Guangdong, Guangxi, Henan, protected Guizhou		39132
163	Mussaenda anomala	Critically endangered	59 trees, All protected	Guangdong, Guangxi, Guizhou	220
164	Dracaena cochinchinensis	Threatened	9215567 trees, majority protected	Guangxi, Henan, Yunnan	19790

Species		Native (N) or exotic (E)	Field collections				Germplasm bank		
			Collections, provenance or progeny tests, arboreta or conservation stands		Clone banks,		In vitro (including cryo conservation)		anks
	Scientific name		No. stands	No. acc.	No. banks	No. clones	No. acc.	No. Banks	No. acc.
1.	Ginkgo biloba	N	4	272					
2.	Larix chinensis	N	1	54				1	30
3.	Larix gmelinii	N	2	226					
4.	Larix gmelini x Larix	N			1	64			
5.	Larix kaempferi	E	2	990		422			
6.	Larix olgensis	N	2	1215		576		1	49
7.	Larix principis-rupprechtii	N	3	147	3	316			
8.	Picea koraiensis	N	2	327	2	77			
9.	Pinus armandi	N	2	230	2	177			
10.	Pinus bungeana	N	5	592				1	344
11.	Pinus caribaea	E	3	220					
12.	Pinus elliottii	E	3	313	2	75			
13.	Pinus kesiya var. langbianensis	N	1	192	1	237			
14.	Pinus koraiensis	N	2	389				1	45
15.	Pinus massoniana	N	5	2891		364		1	565
16.	Pinus strobus	E	1	67					
17.	Pinus sylvestris var. mongolica	N	3	1707		599		1	217
18.	Pinus tabulaeformis	N	4	2748		978		1	371
19.	Pinus taeda	E	3	274					
20.	Pinus taiwanensis	N	3	204				1	45
21.	Pinus yunnanensis	N	1	245	1	38		1	33
22.	Cryptomeria fortunei	N	2	75					
23.	Cryptomeria japonica	E	3	437					
24.	Cunninghamia lanceolata	N	5	3795		257			
25.	Cupressus Iusianica	E	3	221					
26.	Cupressus duclouxiana	N	1	194					
27.	Cupressus funebris	N	2	63					
28.	Fokienia hodginsii	N	3	105					
29.	Juniperus formosana	N	1	61					
30.	Plctycladus orientalis	N	5	314					
31.	Pseudotaxus chienii	N	1	70					
32.	Casuarina cunninghamiana	N	3	74					
33.	Casuarina equisetifolia	N	2	74					
34.	Casuarina junghuhniana	N	2	54					
35.	Populus alba	N	3	249					

Table 11 List of t	tree species with	ex situ conservation							
--------------------	-------------------	----------------------							
Ï				Field co	llections		Germp	lasm bank	[
-----	---------------------------------	--------------------------------	--	----------	--------------	---	----------	--------------	-------------
	Species	Native (N) or exotic (E)	Collections, provenance or progeny tests, arboreta or conservation stands			In vitro (including cryo conservation)	Seed b	anks	
	Scientific name		No. stands	No. acc.	No. banks	No. clones	No. acc.	No. Banks	No. acc.
36.	Populus davidiana	N	1	54					
37.	Populus deltoides	E	5	226					
38.	Populus lasiocarpa	Ν	3	123					
39.	Populus tomentosa	Ν	5	244	3	512			
40.	Populus yunnanensis	Ν	3	180					
41.	Populus x euramericana	E			4	150			
42.	Salix integra	Ν	2	71					
43.	Salix spp.	N/E	2	149	2	612			
44.	Juglans regia	Ν			4	118			
45.	Juglans mandshurica	N	1	59					
46.	Alnus cremastogyne	N	3	57					
47.	Alnus nepalensis	N	3	84					
48.	Betula alnoides	N	2	1123					
49.	Betula platyphylla	N	1	86					
50.	Castanea mollissima	N	4	591					
51.	Castanopsis hystrix	N	3	139					
52.	Castanopsis sclerophylla	N	3	152					
53.	Quercus aliena var.acuteserrata	N	1	52					
54.	Pseudoceltis tatarinowii	N	2	298					
55.	Ulmus pumila	N	4	642					
56.	Ficus racemosa	N	1	80					
57.	Cercidiphyllum japonicum	N	1	61					
58.	Paeonia delavayi	N			1	250			
59.	Paeonia suffruticosa	N			1	979			
60.	Liriodendron chinensis	N	3	51				1	50
61.	Paramichelia baillonii	N	1	110					
62.	Chimonanthus praecox	N			1	133			
63.	Cinnamomum camphora	N	4	185					
64.	Eucommia ulmoides	N	3	168	3	250			
65.	Amygdalus persica	N	2	65					
66.	Armeniaca sibirica	N	4	148				1	60
67.	Prunus humilis	N			1	610			
68.	Prunus pedunculata	N	3	144					
69.	Rosa chinensis	N/E			1	212			
70.	Acacia mearnsii	E	3	190					
71.	Albizia kalkora	N	1	65					

				Field co		Germplasm bank			
	Species	Native (N) or exotic (E)	Collec proven progen arbor conse sta	ctions, ance or y tests, eta or rvation nds	Clone banks,		In vitro (including cryo conservation)	Seed banks	
	Scientific name		No. stands	No. acc.	No. banks	No. clones	No. acc.	No. Banks	No. acc.
72.	Caesalpinia spinosa	E	1	74					
73.	Caragana Korshinskii	Ν	2	78				1	78
74.	Dalbergia obtusifolia	Ν	2	247					
75.	Dalbergia odorifera	Ν	3	206					
76.	Hedysarum scoparium	Ν	2	250				1	25
77.	Robinia pseudoacacia	E	4	496	2	446			
78.	Sophora japonica	Ν	4	192				1	160
79.	Phellodendron amurense	Ν	3	146					
80.	Ailanthus altissima	Ν	3	140					
81.	Melia azedarach	Ν	3	87				1	981
82.	Toona ciliata	Ν	2	53					
83.	Toona ciliata var. pubescens	Ν	3	221					
84.	Toona sinensis	Ν	2	321					
85.	Aleurites fordii	Ν	3	122					
86.	Aleurites fordii	Ν	2	56					
87.	Jatropha curcas	N/E	3	553					
88.	Phyllanthus emblica	Ν			1	91			
89.	Sapindus mukorossi	Ν	2	71					
90.	Zizyphus jujuba	Ν			4	112			
91.	Camellia reticulata	Ν	3	161	3	53			
92.	Camellia oleifera	Ν			5	307			
93.	Camellia sinensis	Ν	3	142					
94.	Schima superba	Ν	3	131					
95.	Eucalyptus camaldulensis	E	3	104					
96.	Eucalyptus cloeziana	E	3	62					
97.	Eucalyptus dunnii	E	3	154					
98.	Eucalyptus globulus	E	3	360					
99.	Eucalyptus grandis	E	3	468					
100.	Eucalyptus pellita	E	3	233					
101.	Eucalyptus smithii	E	3	102					
102.	Eucalyptus tereticornis	E	3	104					
103.	Eucalyptus urophylla	E	3	646					
104.	Diospyros glaucifolia	Ν			3	84			
105.	Diospyros Kaki	Ν			3	94			
106.	Fraxinus mandshurica	Ν	2	772		82			
107.	Luculia pinciana	Ν			2	137			

				Field co	llections	Germplasm bank			
Species		Native (N) or exotic (E)	Collections, provenance or progeny tests, arboreta or conservation stands		Clone banks,		In vitro (including cryo conservation)	Seed banks	
	Scientific name		No. stands	No. acc.	No. banks	No. clones	No. acc.	No. Banks	No. acc.
108.	Calophyllum inophyllum	Ν	1	200					
109.	Tectona grandis	N/E	3	127					
110.	Catalpa bungei	Ν	3	193					
111.	Artemisia deserrorum	Ν	1	122					
112.	Dendrocalamus latiflorus	N			1	115			
113.	Phyllostachys bambusoides	Ν			3	192			
114.	Phyllostachys edulis	N			3	74	1	1	321
115.	Phyllostachys vioascens	N			3	123			

	Native Quantity of Number Species (N) or vegetat		er of ative	Number of					
No.	(Scientific name)	Exotic	seed	(Kg)	propa	gules	seed	lings	Purpose
		(E)	Import	Export	Import	Export	Import	Export	
1	Araucaria cunninghamii	E	>10						Commercial
2	Ginkgo biloba	N		>10					Commercial
3	Abies fargesii	N		>10					Production
4	Abies forrestii	N		>10					Production
5	Cedrus deodara	E	>1000						Commercial
6	Pinus banksiana	E	>10						Commercial
7	Pinus caribaea	E	>10						Commercial
8	Pinus elliottii	E	>10						Commercial
9	Pinus taeda	E	>10						Production
10	Pinus yunnanensis	N		>10					Commercial
11	Tsuga chinensis	N		>10					Commercial
12	Taiwania cryptomerioides	Ν		>10					Commercial
13	Cupressus lusitanica	E	>10						Commercial
14	Cupressus macrocarpa	E	>10						Commercial
15	Juniperus formosana	N		>10					Commercial
16	Juniperus rigida	Ν		>10					Commercial
17	Platycladus orientalis	Ν		>10					Production
18	Nageia nagi	Ν		>10					Gardening
19	Sabina chinensis	Ν		>10					Commercial
20	Taxus chinensis	Ν		>10					Production
21	Taxus chinensis var. mairei	Ν		>10					Commercial
22	Taxus cuspidata	Ν		>10					Commercial
23	Casuarina equisetifolia	E	>10						Commercial
24	Myrica rubra	N		>10					Commercial
25	Juglans regia	Ν		>10					Production
26	Platycarya strobilacea	Ν		>10					Production
27	Alnus cremastogyne	N		>10					Production
28	Betula tiansshanica	N		>10					Commercial
29	Carpinus cordata	N		>10					Production
30	Castanea henryi	N		>10					Commercial

Table 12 Seed and vegetative propagules transferred internationally per year (Partial)

			Quan	tity of	Numb	per of	Num	per of	
No.	Species	(N) or	seed	l (Kg)	veget	ative	seed	lings	Purpose
	(Scientific hame)	(E)	Import	Export	Import	Export	Import	Export	
31	Castanea mollissima	N		>10					Commercial
32	Fagus longipetiolata	N		>10					Commercial
33	Quercus acutissima	N		>10					Commercial
34	Quercus mongolica	N		>10					Commercial
35	Quercus variabilis	Ν		>10					Commercial
36	Celtis sinensis	Ν		>10					Commercial
37	Ulmus davidiana	N		>10					Commercial
38	Ulmus parvifolia	N		>10					Commercial
39	Ulmus pumila	Ν		>10					Commercial
40	Zelkova schneideriana	Ν		>10					Commercial
41	Zelkova serrata	Ν		>10					Commercial
42	Zelkova sinica	Ν		>10					Commercial
43	Morus alba	Ν		>10					Commercial
44	Berberis thunbergii	Ν		>10					Production
45	Liriodendron tulipifera	E	>100						Production
46	Prunus japonica	Ν		>10					Commercial
47	Prunus mume	Ν		>10					Commercial
48	Acacia spp.	Е	>10						Commercial
49	Amorpha fruticosa	Ν		>10					Commercial
50	Cercis Canadensis	Е	>10						Commercial
51	Cercis chinensis	Ν		>10					Production
52	Gleditsia japonica var.	N		>10					Production
52	delavayi			- 10					Troduction
53	Gleditsia sinensis	Ν		>10					Production
54	Laburnum alpinum	Е	>10						Production
55	Sophora japonica	Ν		>10					Commercial
56	Wisteria sinensis	Ν		>10					Commercial
57	Toona sinensis	Ν		>10					Commercial
58	Buxus sinica	Ν		>10					Commercial
59	Cotinus coggygria var. cinerea	Ν		>10					Commercial
60	Cotinus coggygria var. atropurpureus	E	>10						Commercial

No.	Species (Scientific name)	Native (N) or Exotic	Quan seed	tity of I (Kg)	Number of vegetative propagules		Number of seedlings		Purpose
		(E)	Import	Export	Import	Export	Import	Export	
61	Toxicodendron succedanea	Ν		>10					Commercial
62	llex cornuta	N		>10					Commercial
63	llex latifolia	N		>10					Commercial
64	llex purpurea	N		>10					Commercial
65	Euscaphis japonica	N		>10					Commercial
66	Acer rubrum	E	>10						Commercial
67	Acer sinense	N		>10					Commercial
68	Acer triflorum	N		>10					Commercial
69	Ziziphus jujuba	N		>10					Commercial
70	Tilia amurensis	N		>10					Commercial
71	Tilia mandshurica	N		>10					Commercial
72	Camellia japonica	N		>10					Commercial
73	Elaeagnus umbellata	N		>10					Commercial
74	Nyssa sinensis	N		>10					Commercial
75	Eucalyptus spp.	E	>10						Commercial
76	Cornus alba	N		>10					Commercial
77	Cornus walteri	N		>10					Commercial
78	Fraxinus bungeana	N		>10					Commercial
79	Fraxinus chinensis	N		>10					Commercial
80	Fraxinus mandshurica	N		>10					Commercial
81	Osmanthus fragrans	N		>10					Commercial
82	Syringa microphylla	N		>10					Commercial
83	Syringa pekinensis	N		>10					Commercial
84	Syringa reticulate var.amurensis	N		>10					Commercial
85	Syringa velutina	N		>10					Commercial
86	Lonicera maackii	N		>10					Commercial

Data sources: China National Tree Seed Coporation, http://www.chinaseeds.com/

N		Native (N) or		Improveme	ent progra	gramme objective			
NO.	Scientific name	exotic (E)	Timber	Pulpwood	Energy	MP*	NWFP**	Other	
1	Ginkgo biloba	N							
2	Keteleeria fortunei	N							
3	Larix gmelinii	N							
4	Larix kaempferi	E	\checkmark						
5	Larix olgensis	N							
6	Larix principis-rupprechtii	N							
7	Picea koraiensis	N	\checkmark						
8	Picea meyeri	N							
9	Pinus armandii	N							
10	Pinus bungeana	N							
11	Pinus caribaea	E		\checkmark					
12	Pinus densata	N							
13	Pinus densiflora	N	\checkmark						
14	pinus elliottii	E							
15	Pinus koraiensis	N							
16	Pinus massoniana	N							
17	Pinus rigida var.serotina	E							
18	Pinus sylvestnis var. mongolica	N							
19	Pinus tabuliformis	N							
20	Pinus taeda	E							
21	Pinus taiwanensis	Ν	\checkmark						
22	Pinus thunbergii	N	\checkmark						
23	Pinus yunnanensis	N							
24	Cryptomeria fortunei	N							
25	Cunninghamia lanceolata	N	\checkmark					\checkmark	
26	Metasequoia glyptostroboides	N							
27	Taiwania cryptomerioides	N							
28	Taxodium ascendens	E							
29	Taxodium distichum	E							
30	Cupressus funebris	N	\checkmark						
31	Juniperus rigida	N							
32	Platycladus orientalis	N							
33	Casuarina equisetifolia	E							
34	Populus cathayana	N	\checkmark	\checkmark					
35	Populus canadensis	E	\checkmark	\checkmark	I				
36	Populus davidiana	N		\checkmark					
37	Populus euphratica	N		\checkmark					
38	Populus nigra	E	\checkmark	\checkmark	I				
39	Populus simonii	N	\checkmark						

Table 13 List of tree species with genetic improvement programmes

No	Scientific name	Native (N) or	r Improvement programme objective						
NO.	Scientific name	exotic (E)	Timber	Pulpwood	Energy	MP*	NWFP**	Other	
40	Populus tomentosa	N	\checkmark						
41	Salix babylonica	Ν	\checkmark						
42	Salix matsudana	Ν	\checkmark						
43	Juglans regia	Ν							
44	Alnus cremastogyne	Ν							
45	Betula alnoides	Ν	\checkmark	\checkmark					
46	Betula platyphylla	Ν	\checkmark						
47	Corylus chinensis	Ν							
48	Castanea henryi	Ν	\checkmark						
49	Castanea mollissima	Ν					\checkmark		
50	Castanopsis eyrei	Ν							
51	Castanopsis hystrix	Ν							
52	Castanopsis sclerophylla	Ν							
53	Fagus longipetiolata	Ν							
54	Quercus mongolica	N							
55	Ulmus pumila	N							
56	Zelkova serrata	N							
57	Ficus microcarpa	N							
58	Calligonum mongolicum	N							
59	Haloxylon ammodendron	N							
60	Paeonia suffruticosa	N						\checkmark	
61	Liriodendron chinensis	N							
62	Liriodendron tulipifera	E	\checkmark						
63	Magnolia denudata	N							
64	Magnolia liliiflora	N					\checkmark		
65	Magnolia Medicinalis	N							
66	Manglietia yuyuanensis	N						\checkmark	
67	Michelia chapensis	N							
68	Michelia macclurei	N	\checkmark						
69	Chimonanthus praecox	N						\checkmark	
70	Cinnamomum camphora	N	\checkmark						
71	Phoebe zhennan	N	\checkmark					\checkmark	
72	Sassafras tsumu	N	\checkmark						
73	Liquidambar formosana	N	\checkmark						
74	Eucommia ulmoides	N							
75	Crataegus pinnatifida	N							
76	Armeniaca vulgaris	N							
77	Sorbus pohuashanensis	N						\checkmark	
78	Acacia auriculiformis	E		\checkmark					
79	Acacia crassicarpa	E							

No	Scientific name	Native (N) or	or Improvement programme objective					
NO.		exotic (E)	Timber	Pulpwood	Energy	MP*	NWFP**	Other
80	Acacia mangium	E		\checkmark				
81	Gleditsia sinensis	Ν	\checkmark	\checkmark		\checkmark		
82	Robinia pseudoacacia	Ν		\checkmark				
83	Sophora japonica	Ν						\checkmark
84	Zanthoxylum bungeanum	Ν						
85	Ailanthus altissima	Ν	\checkmark			\checkmark		
86	Melia azedarach	Ν						
87	Toona sinensis	Ν	\checkmark			\checkmark		
88	Jatropha curcas	E						
89	Sapium sebiferum	Ν						
90	Vernicia fordii	Ν				\checkmark		
91	Choerospondias axillaris	Ν	\checkmark			\checkmark		
92	Cotinus coggygria	E						\checkmark
93	Toxicodendron vernicifluum	Ν						
94	Dimocarpus longgana	Ν						
95	Zizyphus jujuba	Ν						
96	Elaeocarpus sylvestris	N						
97	Camellia oleifera	Ν						
98	Elaeagnus angustifolia	N						
99	Hippophae rhamnoides	Ν						
100	Lagerstroemia indica	Ν						
101	Davidia involucrata	N						
102	Eucalyptus exserta	E						
103	Eucalyptus smithii	E						
104	Eucalyptus tereticornis	E						
105	Eucalyptus urophylla	E						
106	Cornus officinalis	Ν						
107	Rhododendron simsii	N						
108	Diospyros kaki	Ν						
109	Osmanthus fragrans	Ν						
110	Tectona grandis	E						
111	Lycium chinense	Ν						
112	Catalpa bungei	Ν						
113	Calamus tetradactylus	Ν				\checkmark		
114	Daemonorops margaritae	Ν						
115	Phyllostachys edulis	Ν						

*MP: Multipurpose tree improvement program; **NWFP: Non-wood forest product

Data sources: Full-text database of Chinese journals

		Native	Plus trees	Provenan	ce trials	Progenies trials		Clonal testing and development				
No.	Scientific name	(N) or exotic (E)	Number	No. of trials	No. of prov.	No. of trials	No. of families	No. of tests	No. of clones tested	No. Clones selected	No. Clones used	
1	Larix gmelinii	Ν			17	1						
2	Larix kaempferi	E			10	2				8		
3	Larix olgensis	Ν			19	2						
4	Larix principis-rupprechtii	Ν			9	1						
5	Larix sibirica	Ν			15	2						
6	Picea asperata	Ν			17	1						
7	Pinus armandi	Ν			26	3	120	1	32	11		
8	Pinus banksiana	E			13	1						
9	Pinus bungeana	Ν			10	1	112	1				
10	Pinus caribaea	E			15	2						
11	Pinus contorta	E			5	1						
12	pinus elliottii	E			47	1						
13	Pinus koraiensis	Ν	557	1	16	2	360	1				
14	Pinus massoniana	Ν			142	4	268	8		53		
15	Pinus sylvestris var. mongolica	Ν		3	19	2	237	2				
16	Pinus tabulaeformis	Ν	1000	5	42	5	82	2				
17	Pinus taeda	E			27	2				5		
18	Pinus yunnanensis	Ν			4	1	81	1				
19	Cunninghamia lanceolata	Ν			209	15	570	20		12		
20	Taiwania cryptomerioides	Ν			13	1	24	1				
21	Fokienia hodginsii	Ν		2	17	1	48	1	15	5	5	
22	Platycladus orientalis	Ν			66	4						
23	Casuarina equisetifolia	E			66	3	12	1	12	1	1	
24	Alnus cremastogyne	Ν										
25	Betula luminifera	Ν			12	1						
26	Betula platyphylla	Ν			14	2	34	1				
27	Castanopsis hystrix	Ν			10	1						
28	Liriodendron chinensis	Ν			15	6						
29	Liriodendron tulipifera	E			9	3						
30	Magnolia Medicinalis	Ν			18	1						
31	Cinnamomum camphora	Ν			17	4	78	2				
32	Phoebe bournei	Ν			21	1						
33	Prunus tomentosa	Ν			4	1						
34	Prunus armeniana	Ν			4	1						
35	Acacia spp.	E			24	3						
36	Robinia pseudoacacia	E			19	3						
37	Phellodendron amurense	N			14	2						
38	Melia azedarach	N			5	1						

Table 14 Tree improvement trials (Partial)

		Native	Plus trees	Provenan	ce trials	Progen	ies trials	Clona	Clonal testing and development		
No.	Scientific name	(N) or exotic (E)	Number	No. of trials	No. of prov.	No. of trials	No. of families	No. of tests	No. of clones tested	No. Clones selected	No. Clones used
39	Toona sinensis	Ν			9	1					
40	Acer davidii	Ν			12	1					
41	Camellia oleifera	Ν			26	2	175	1			
42	Hippophae rhamnoides	N/E			6+	1	10+		15+		
43	Eucalyptus spp.	E			33	3				24	
44	Eucalyptus tereticornis	E			4	2					
45	Eucalyptus urophylla	E			4	2					
46	Phyllostachys edulis	Ν			16	2					

Data sources: Full-text database of Chinese journals

Spaciae (Scientific name)		Seed orchards	5
Species (Scientific fiame)	Number	Generation	Area (ha)
Alnus cremastogyne	149	1	3
Betula Platyphylla	34	Greenhouse indoor seed orchard	750m ²
Cryptomeria fortunei	16	1	1.5
		1.5	80
Cunninghamia lanceolata		2	60
		3	20
Cupressus funebris	45	1	3.8
Eucalyptus smithii	22	1	4
Haloxylon ammodendron		1	6.63
Larix gmelinii	192	1	112
Larix kaempferi	142	1	15
Larix principis-rupprechtii	108	1	74.4
Pinus elliottii		1.5	80
		2	25
Pinus kesiya var. langbianensis	35	1	12
Pinus koraiensis	108	1.5	30
Pinus massoniana		1.5	80
		2	24
Pinus sylvestnis var. mongolica	678	1	670.5
Pinus tabulaeformis	31	2	3.5
Pinus taeda		1.5	30

Data sources: Full-text database of Chinese journals

		Available for national		Available for international		
Species (scientific name)	Type of material	requests only		requests only		
		Commercial	Research	Commercial	Research	
Alnus cremastogyne 'A-P1'	Seed, plant stock	\checkmark				
Camellia oleifera 'Xianglin'	Scion, plant stock					
Castanea mollissima 'Shuangji'	Scion, plant stock	\checkmark				
Cinnamomum camphora 'Z01'	Scion, plant stock	V				
Corylus chinensis 'Yuzhui	Scion, plant stock	V				
Cunninghamia lanceolata	Sood plant stock					
'Rongshui'	Seeu, plant stock	v				
Ginkgo biloba 'Dafushou'	plant stock	\checkmark				
Hippophae rhamnoides	Seed, plant stock	\checkmark				
Juglans regia 'Sichuan'	Scion, plant stock	\checkmark				
Liriodendron chinensis × L.	Scion plant stock	2				
tulipifera	ocion, plant stock	v				
Liriodendron chinensis 'L-P1'	Seed, plant stock	\checkmark				
Pinus bungeana	Seed, plant stock					
Pinus massoniana 'Tongmian'	Seed, plant stock	\checkmark				
Populus sp.	Scion, plant stock	\checkmark				
Populus alba '84K'	Scion, plant stock	\checkmark				
Populus bolleana	Scion, plant stock	\checkmark				
Populus canadensis '107', '108'	Scion, plant stock	\checkmark				
Populus x canadensis 'Sacrou 79'	Scion, plant stock	\checkmark				
Populus tomentosa. 'Sanmaoyang'	Scion, plant stock	\checkmark				
Amygdalus communis 'Zhipi'	Scion, plant stock	\checkmark				
Salix babylonica 'Jinsi'	Scion, plant stock	\checkmark				
Sophora japonica 'Jinye'	plant stock	\checkmark				
Sophora japonica 'Wuse'	plant stock	\checkmark				
Taxodium ascendens × Taxodium	Scion, plant stock	N				
mucronatum	olion, plant block	,				
Taxus cuspidata × T. bauata	Scion, plant stock	N				
'Mandia'	oción, plant stock	v				
Ulmus pumila 'Jinye'	Scion, plant stock	\checkmark				
Ulmus pumila var. pendula	Scion, plant stock	\checkmark				
Zanthoxylum bungeanum	Scion, plant stock					
'Jiuyeqin'		,				
Zizyphus jujuba 'Youzao'	Scion, plant stock	\checkmark				
Zizyphus jujuba 'Hami'	Scion, plant stock	\checkmark				

Table 16 Type of reproductive material available (Partial)

Data source: Handbook of improved forest tree seed

No.	Name of institution	Type of institution	Activities or programs
1	Department of wildlife protection and nature reserve management, SFA	Government	Management of wildlife animals and nature reserve
2	Administration of State-owned Forest Farms and Forest Seed and service, SFA	Government	Management of tree seed and plant stocks, forest farms and forest parks
3	Science and technology development center, SFA	Government	Management and coordination of the forestry biological genetic resources
4	Management center for import and export of endangered species, SFA	Government	Management of import and export of endangered plants and animals
5	Chinese Academy of Forestry	Research	FGR research and development, and FGR services
6	The state forestry administration International bamboo rattan network center, SFA	Research	Bamboo genetic resources research & development and services
7	Beijing Forestry University	University	FGR education and research
8	Northeast Forestry University	University	FGR education and research
9	Nanjing Forestry University	University	FGR education and research
10	Centralsouth Forestry Technology University	University	FGR education and research
11	Southwest Forestry University	University	FGR education and research
12	Provincial administrations of tree seeds and plant stocks	Government	Management to tree seeds and Seedlings and FGR
13	Provincial forestry academies	Research	FGR research
14	Multi-species FGR conservation banks (22 locations)	Research	FGR conservation and management
15	Single-species FGR conservation banks (13 locations)	Research	FGR conversation and propagation
16	Local (regional) FGR conservation banks (1300 locations)	Research	FGR conversation and Production of propagation materials
17	FGR conservation and display arboreta /Botanic gardens (160 locations)	Research	FGR collection, conservation, display and public traaining
18	All levels of nature reserves of forestry system of	Government	FGR protection

Table 17 Institutions involved in conservation and use of FGR (Partial)

		Priorit	y level	
Needs	Not applicable	Low	Moderate	High
Improve FGR legislation				\checkmark
Improve reporting requirements			\checkmark	
Consider sanction for non-compliance				
Create forest genetic resources targeted regulations				
Improve effectiveness of forest genetic resources regulations				
Enhance cooperation between forest genetic resources national authorities			\checkmark	
Create a permanent national commission for conservation and management of forest genetic resources				\checkmark
Other				

Table 18 Needs for developing FGR legislation and priority level

	Priority level			
Needs	Not applicable	Low	Moderate	High
Prepare targeted forest genetic resources information			\checkmark	
Prepare targeted forest genetic resources communication strategy			\checkmark	
Improve access to forest genetic resources information				
Enhance forest genetic resources training and education			\checkmark	
Improve understanding of benefits and values of forest genetic resources				\checkmark
Other				

Table 19 Needs for awareness raising and priority level

Network Name	Activities	Genus/species Involved				
	International network and organization					
FAO	1, 6	Olea europaea, Casuarina equisetifolia				
UNDP	1, 4, 6	Populus spp., Pinus elliottii, Pinus taeda, Paulownia spp.				
Bioversity	1	Cunninghamia lanceolata, Erythrophleum fordii, Pterocarpus				
International		indicus, Toona sinensis, Acacia spp.), Eucalyptus spp., Tectona				
		grandis, Artocarpus heterophyllus, Aquilaria spp., Azadirachta				
		indica, Bamboo, Chukrasia tabularis, Fokienia hodginsii, Gmelina				
		arborea, Pinus wallichiana, Casuarina equisetifolia, Juglans regia,				
		Pistacia vera, Prunus amygdalus, Ziziphus jujube				
ITTO	4, 6	Hevea brasiliensis, Bamboo, Anthocephalus chinensis,				
		Bennettiodendron leprosipe, Parakmeria yunnanensis, Betula				
		alnoides, Altingia excels, Schima wallichii, Choerospondias				
		axillaris				
INBAR	1, 3	Bamboo, Rattan				
GEF	4, 6	Camellia oleifera				
WWF	1, 6, 4	Larix chinensis, Camellia luteoflora, Thespesia populneoides,				
		Cupressus gigantean, Acer pentaphyllum, Berchemiella wilsonii				
Teaknet	1, 3	Tectona grandis				
Neem net	1, 3	Melia azedarach				

Table 20 Overview of the main activities carried out through networks and species involved

Activities:

- 1- Information exchanges
- 2- Development of technical guidelines
- 3- Development of shared databases
- 4- Establishment of genetic conservation strategies
- 5- Germplasm exchange
- 6- Elaboration, submission and execution of joint research projects.
- 7- Other. (Please specify) _____

	L	Level of priority			
Needs	Not applicable	Low	Medium	High	
Understanding the state of diversity				\checkmark	
Enhancing in situ management and conservation					
Enhancing ex situ management and conservation				\checkmark	
Enhancing use of forest genetic resources			\checkmark		
Enhancing research				\checkmark	
Enhancing education and training				\checkmark	
Enhancing legislation			\checkmark		
Enhancing information management and early warning					
systems for forest genetic resources			,		
Any other priorities for international programmes					

Table 21 Awareness raising needs. Needs for international collaboration and network	orking
---	--------

No.	Species	Contribution to food security	Roles in poverty allevation
1	Actinidia chinensis	Fresh fruit, rich nutrition, many superior varieties	Large planting area, high yield, good economic return, one of income sources for farmers.
2	Amygdalus communis	Rich nutrition, diverse nutrients and wide range of varieities	High economic value, play an important role in poverty alleviation in the northwest.
3	Amygdalus persica	Rich nutrition, rich content of pectic substances, fresh uses or processed for dry fruit and canned fruit, wide range of varieities, kernel may be edible	Widely planted, high yield, good economic return, one of the major income sources of farmers
4	Aralia mandshrica	Shoots for edible uses, processed for preserved vegetable	Widespread in northeast forest region, growing in open areas in forest, for food and medicinal uses, high economic value
5	Artocarpus heterophyllus	Served in fresh or cooked, or as vegetables. hihg contents of sugar, protein, vitamins B, C, minerals, fattyoil	Grown in Hainan, Guangdong, Guangxi, Yunnan, Taiwan. Used for shading, ornamental and edible uses. High economic value
6	Calamus tetradactylus		Used for making chairs, baskets and mats, also for medicines. Grown for poverty alleviation of farmers
7	Camellia oleifera	Over 30% oil content in seed, used to produce high qulity edible oil	Widely grown in subtropics, effective in poverty alleviation for farmers
8	Carya cathayensis	Crunchy and tasty, for edible uses or oil extractioin. Also ingredient for candy and dessert.	Dominant industry in Tianmu Mountain region, main income source for famers
9	Carya illinoensis	Nice taste, rich nutrition, for edible uses or oil extractioin. High-grade nutritional and health care products.	Grown as raw material for food production in many areas. High-grade dry fruit in the world, high economic benefit
10	Castanea henryi	Famous nut, highly nutrional and natural green food. Used to produce chestnut powder or canned food	limportant species for both timber and food, timber sed for rail road and construction, good economic benefit
11	Castanea mollissima	Direct use or decorational food	Widely grown, large yield top of the world, multiple uses for timber production and

Table 22 List of woody plant species important for food security or livelihoods

No.	Species	Contribution to food security	Roles in poverty allevation
			landscaping, high economic benefit, good species for poverty alleviation in mountain areas
12	Cerasus pseudocerasu s	Fresh food, preserved food or decorational food	TMultiple uses for food and and landscaping, widely planted, an important resource for the poverty alleviation of farmers
13	Citrus maxima	Highly nutritional, 4 major most famous varieties are cultivated in China	Highly demanded in markets, helping farmers and enterprises to become rich
14	Citrus reticulata	Highly nutritional, high contents of vitamin C and citric acid	Widely grown south from Hainan, north to Shan'xi, Ggansu and Henan; east from Taiwan, west to Tibet. Important fruit trees of income generaton for farmers
15	Citrus sinensis	High content of sugar, vitamin C and a certain amount of citric acid, high nutritional value. Fruit also contains vitamin P	Widely grown in southern provinces and centralize Sichuan, Guangdong and Taiwan, high medicinal value, significant contribution to local economic development
16	Cornus walteri	31.8-41.3% oil content in fruit, used as normal cooking oil	Widely grown in areas from Liaoning to southwesernt provinces, also used for industrial oil. Wood is hard with fine grains, suitable for high quality furniture or woodcarving, high economic value.
17	Corylus chinensis	Served in fresh or cooked, good raw material for Chocolate, candy and Dessert, also for extraction of edible and industrial oil	Widely grown and highly demanded, highly profitable, good species for poverty alleviation
18	Crataegus pinnatifida	Endemic species for both edible and medicinal uses, diverse varieties, used as fresh fruit or processed for drinks	Lovely flowers and fruits, good ornamental species for 4-side plantings. Rich wild resources suitable for poverty alleviation for farmers
19	Dimocarpus Ionggana	Fresh use and for canned food, wine, cream, sauce, also processed into dried fruit	Valuable fruit in south subtropics, for both timber and medicinal uses, an important income source for local farmers
20	Elaeagnus	Sugar ceontent 43-59% (20% of	Multiple ecological and economic uses

No.	Species	Contribution to food security	Roles in poverty allevation
	angustifolia	which is fructose). Used to produce powder, wine, vinegar, soy sauce, jam	such as fodder, wine, vinegar, saurce, medicne, essential oil and gum, highly profitable
21	Elaeagnus spp.	Highly nutritional, containing sugar, fat, tannins, organic acidd and vitamin B and C	Roots, leaves and fruits for medicinal use, a potential ecological economic tree species, root can fix nitrogen, beautiful green leaves and red fruits are of high ornamental value, good economic return
22	Elaeis guineensis	High oil content, palm oil is highly nutrional and good for edible use	Widely grown in the tropics, high oil yield, residues from oil extraction used as feed and fertilizer, nut shell used to make activated carbon, important economic source for poverty alleviation for farmers
23	Eriobotrya japonica	Delicious taste, highly nutritional, multiple medicainal functions of cough relief amd lung moisturing	Uses of edible, medicinal and landscaping, widely grown, important income source for poverty alleviation for farmers
24	Ginkgo biloba	Kernel edible, diverse varieties.	With high economic value, multiple usesformedicinal,timberandornamental.Highly profitable.
25	Grossularia spp.	Rich in nutrition, suitable for fresh eating and processed products, Unique taste of its jams, wine, and canned fruit.	Cold resistance, tolerant to storage and transportation, high economic value
26	Hippophae rhamnoides	Highly nutritious, processed for food, beverage and health care products.	Fruit containing bioactive substances, edible and medicinal uses, Growing, harvesting and processing provide opportunities for local farmers to alleviate poverty
27	Juglans regia	Used in fresh or cooked, oil extraction, or processed walnut powder, high nutritional value.	Medicinal use. Obvious economic benefit, a very important economic tree species for poverty alleviation in mountain areas
28	Litchi chinensis	Rich nutrition, used in fresh or processed, wide range of improved varieties	Widely grown in tropical area, main source of revenue doe local farmers
29	Malus baccata	Used to produce wine and green	Potential ornamental species for gardening

No.	Species	Contribution to food security	Roles in poverty allevation
		processed as dried fruit and candied fruit	and landscaping, bark used as dye, commonly used as root stocks for grafting fruit trees, helping farmers to alleviate poverty
30	Malus pumila	Used in fresh, processed to produce wines and beverages, a wide range of varieties available	Widely grown, large yield, a major species for poverty alleviation for farmers
31	Malus spectabilis	Except fresh use, mostly processed into jams, vinegar and wine	Wwidely grown in north China, health care edibls, popular species for flower and fruits. high economic value
32	Myrica rubra	Highly nutritious, high contents of calcium, phosphorus, and iron, used in fresh	Health care function, easy cultivatation, long-lasting economic value, low production cost and acceptable economic benefit, popular in the international marke.
33	Olea europaea	Used to produce high quality edible oil, known as the Queen of "vegetable oil"	Suitable for the low valleys of the upstream of the Yangtze river, evident economic benefit
34	Osmanthus fragrans	Used for extracting aromatic oils and for edibles, also for making cakes and candy, brew wine. Many Osmanthus food available	Wlith wide cultivation range, both medicinal and ornamental value, as a important way for local people to become rich.
35	Phyllostachys heterocycla	Bamboo shoots are excellent vegetables for fresh fry, dried and canned food	The most valuable bamboo in China, widely planted in south central maintain areas, high.economic benefit
36	Pinus armandii	Edible pine nuts, pollen can be used to make health care and nitritritonal food	Grown in the maintain areas in north China and northwest China, high economic benefit
37	Pinus bungeana	Edible pine nuts, pollen can be used to make health care and nitritritonal food	Mainly used for landscaping, important for local people to generate income and alleviate poverty.
38	Pinus koraiensis	Large pine nuts, delicious taste and highly nutritional	Precious wood, beautiful tree form, used for landscaping. High potential in the northeast for income generation and poverty alleviation
39	Pinus	Pollen has been widely used for	Multiple uses of medicinal, timber and

No.	Species	Contribution to food security	Roles in poverty allevation
	massoniana	nutritional health food.	ornamental. Rosin production makes significant contribution to poverty alleviation in maintain areas
40	Pinus tabulaeformis	Edible pine nuts, pollen can be used to make health care and nitritritonal food	Multiple uses of edibles, medicinal, timber and ornamental. Widely grown in the maintain areas in north China and northwest China, high economic benefit
41	Pinus yunnanensis	Edible pine nuts, pollen can be used to make health care and nitritritonal food	Multiple uses of edibles, medicinal, timber and ornamental. Widely grown in Yunnan, Guizhou, Sichuan and Guangxi provinces, high economic benefit
42	Pistacia vera	Highly nutrional kernel, delicious taste, used in fresh or fried, also widely used in sugar-making, cakes, chocolate, toast, ice cream, candied fruit, dried fruit, canned food and high-quality edible oi.	Mainly cultivated in Kashi, Hetian and Akesu in Xinjiang, one of the major income sources for local farmers.
43	Prunus spp.	One of the favorite traditional fruit, used in fresh, or processed to make canned or dried fruit prodcucts	Wide adaptability and easy cultivation, mainly grown is south of Yangtze River, high yield, high economic benefit
44	Prunus armeniaca	Nutritious kernel, diverse types of uses of flesh, nut and both	Widely grown in most provinces, huge economic benefit. China is a major producer of fresh apricot and the largest almond juice provider in the world
45	Prunus dulcis	Used in fresh or cooked, or for oil extraction, high nutritioncontent, diverse varieties	Multiple uses of medicinal, wood or ornamental, one of the major species in southern Xinjiang for poverty alleviation
46	Punica granatum	Rich in nutrition and full range of nutrients, mainly used in fresh, diverse varieties	Widely cultivated, high economic profit
47	Rubus	Fresh food or processed products,	Artificial cultivation mainly concentrated in
	corchoritolius	high nutritional value	Widely outfucted cortain output of
48	Semen Trigonellae	Used in fresh, or making wines and drinks. High nutritional value	contribution to poverty alleviation for farmers

No.	Species	Contribution to food security	Roles in poverty allevation
49	Toona sinensis	Unique fragrance of shoot, highly nutritional, good food for health and beauty	Wood is used as raw materials for high-quality furniture. Shoots are valuable, highly profitable, one of the ways to help farmers to get rid of poverty
50	Torreya grandis 'Merrill ii'	The best nut among dried fruits, with edible and medicinal values	Edible, medicinal and ornamental uses, grown in south of the Yangtze River, high economic value
51	Ulmus pumila	Fruit used as a edible vegetable, green food	Timber, young fruit and leaves all used for income generatin, help farmers in poverty alleviation
52	Vitis vinifera	Rich in nutrition, used in fresh or for making wines, many varieties available	Widely cultivated, significant economic benefit
53	Xanthoceras sorbifolia	Seed for extraction of edible oil, 50-70% oil content and 25.75% protein content in kernel, content of unsaturated fatty acid as high as 94%	Important multi-purpose economic species, particularly as an energy sp[eceis, great potential for future development and economic value
54	Zanthoxylum bungeanum	Well-known ingredient for cooking, young leaves and buds used as edible vegetable	Widely grown, playing important roles in poverty alleviation and income generation
55	Zizyphus jujuba	Rich in vitamin C, high sugar content, used in fresh or for processed food products	Widely planted, high economic benefit, suitable for poverty alleviation