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Chapter 1

General introduction

Peter Groenendijk



Chapter 1

Tropical forests harbour a high biodiversity, provide many goods such as timber
and non-timber forest products and are an important component of the terrestrial
carbon cycle. Although covering only 7% of the earth’s surface, tropical forests hold
25% of the world’s terrestrial carbon pool (Pan et al., 2011) and account for a third of
the terrestrial net primary productivity (Bonan, 2008). Since tropical forests store
and process so much carbon, net loss or uptake of carbon by tropical forests has
major implications for the global carbon cycle (Achard et al., 2002). Understanding
these changes is crucial to predict tropical forests responses to climate changes
(Wright, 2005) as forests can speed up climate change by acting as source of CO,,
or might mitigate it by sequestering carbon.

Currently, tropical forests are under large pressure of change due to

deforestation, conversion to other land uses and logging (Lambin ef al., 2003).
Deforestation is still high in tropical forests (Hansen et al., 2013) having affected
an estimated 50% of all tropical forests (Asner et al., 2009).
Tropical forests are logged at rates 20 times higher than the rate at which they are
cleared (Asner et al., 2009) and the area of tropical forests assigned for logging
is estimated to be 403 million hectares, or over a fifth of the total forest area
(Blaser et al., 2011). Also, several studies have found indications of changes in
tree growth rates and in forest biomass and dynamics (Wright, 2005). As these
changes were found throughout the tropics in apparently undisturbed forests,
an external factor (such as climate change) has been suggested to be the driver of
these changes. The main focus of this thesis is on changes in tropical forest tree
growth using a long-term perspective.

1.1 Changing tropical forests in a changing world?

Worldwide, forest monitoring studies using permanent sample plots (PSP) have
provided evidence for changes in growth, dynamics and biomass of tropical
forests (e.g., Laurance et al., 2004b; Lewis et al., 2009a; Murphy et al., 2013). Decadal
scale increases in forest biomass have been found for forests in Africa (Lewis et
al., 2009b), Asia (Phillips et al., 1998; Chave et al., 2008), and South-America (Lewis
et al., 2004; Phillips et al., 2008), suggesting a global and pervasive carbon sink in
tropical forests. Additionally, increases in tree growth have also been reported
(Laurance et al., 2004b; Lewis et al., 2009a). These biomass and growth increases
have been interpreted to reflect a growth stimulation by increased atmospheric
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General introduction

CO, concentrations (e.g., Phillips et al., 2008; Lewis et al., 2009a). On the other hand,
decreasing (Dong et al., 2012) or fluctuating (Murphy et al., 2013) forest biomass
have also been observed, together with growth decreases (Feeley et al., 2011; Nock et
al., 2011). These changes have in turn been interpreted to reflect the negative effect
of higher temperatures on growth (Feeley et al., 2011; Nock et al., 2011).

Up to now, no consensus has been reached on whether tropical forests
growth and biomass are indeed changing and little clarity exists on the drivers
of these changes. Although forming the basis for detecting changes in tropical
forests, monitoring plot studies have so far focussed more on describing forest-
level changes, while being unable to assess their underlying mechanisms. These
forest-level responses are the aggregate result of species-specific responses to
climatic changes or to disturbances and assessing these species-level thus forms
the basis to understand responses of whole communities. Yet, virtually nothing
is known about species-level responses so far (Zuidema et al., 2013).

The high biodiversity of tropical forests combined with the small size
of monitoring plots (usually 1 hectare) has restrained analysis to the community
level and species-level analysis are rare (Feeley et al., 2011). Furthermore, the short
duration of most plot studies (under 30 years) has limited assessing the drivers
of changes. The detected changes may have resulted from decadal-scale growth
fluctuations induced by climatic variability (Feeley et al., 2011), and therefore
not represent progressive long-term alterations in tropical forests, as expected
under climate change. Additionally, changes reported in plots may also arise if
forests are recovering from past disturbances (Fisher et al., 2008; Chambers et
al., 2013; Vlam, 2014). Figure 1.1 provides a schematic overview of the suggested
drivers of changes in tropical forests. For a more profound understanding of
the responses of tropical forests to a changing world, a move from descriptive
studies of decadal-scale changes on forest level, to more long-term studies on
species level is clearly needed (Zuidema et al., 2013).

1.2 Tropical tree-ring research

The scarcity of long-term growth data for tropical forest trees can be overcome
using tree-ring analysis. Tree rings provide a window to the past and can be used
to assess century-scale growth changes in tropical trees (Rozendaal et al., 20103;
Zuidema et al., 2013). However, it is crucial to prove that tree-rings are formed
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annually prior to applying tree-ring analysis to obtain long-term growth data,
especially when working with tropical tree species for which this has not yet
been done.

Tree-ring analysis has been performed for over a century in the tropics
(Coster, 1927; Worbes, 2002). However, for long the formation of annual rings
in tropical rainforests trees has been denied (Swaine, 1994; Kurokawa et al.,
2003). Researcher often believed that there is no clear seasonality in tropical
rainforests, and that growth in these ecosystems is continuous throughout
the year (i.e., no period of cambial dormancy). Additionally, many of the early
publications on tropical tree rings were published in German (Coster, 1927;
Coster, 1928) or in French (Mariaux, 1967), hampering a wider dissemination of
the results. The belief of lacking annual tree-rings in tropical species has thus
for long caused the potential for tree-ring analysis in the tropics to be neglected.
More recently, however, the annual character of tree-rings has been proven for
many tropical tree species growing in seasonally dry (Diinisch et al., 2003; Vlam et
al., 2014b) or seasonally flooded tropical forests (Worbes et al., 1995; Schongart et
al., 2002). Extensive lists have been compiled of tree species with proven annual
ring formation for different tropical biomes (Worbes, 1989; Alves & Angyalossy-
Alfonso, 2000; Tarhule & Hughes, 2002; Worbes, 2002), including species
from tropical rainforests (with 1800—4200 mm annual rainfall; Zuidema et al.,
2012). However, in tropical wet forests, i.e., with annual rainfall >4000 mm, the
potential for tree-rings analysis has barely been assessed (Fichtler et al., 2003).

Provingtheannual character of tree-ring formation isnotstraightforward.
First, the complex anatomy of tropical trees hampers tropical tree-ring research
(Stahle et al., 1999) as understanding this anatomy is required for the correct
identification of ring-boundaries (Worbes & Fichtler, 2010). For instance, false
and wedging rings are common in the wood of tropical tree species. False rings
are anatomical structures in the wood that resemble a ring boundary, but that
are formed due to intra-annual growth variation. Wedging rings occur when
trees grow on only a limited part of the circumference of the stem, producing
rings boundaries that ‘wedge’ together on the parts the tree did not grow. These
problems are not exclusive to the tropics, but appear to be more prevalent in
tropical species than in temperate (Worbes, 1995). The existence of these problems
often requires working with entire stem discs, to be able to follow rings around
the circumference of the stem. Second, climate-growth relations are often used
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General introduction

to prove the annuality of tree-rings (e.g., Brienen & Zuidema, 2005). This entails
building chronologies —an index for annual growth variation - for each species and
relating these chronologies to local or regional climate data. However, building
chronologies is not always possible in the tropics (Fichtler et al., 2003) and the
general low quality of climate records in the tropics (Clark & Clark, 2011) hampers
the analysis of climate-growth variations. Finally, in the case chronologies cannot
be built, radiocarbon dating can be used to confirm the dating of the marked rings
(Worbes & Junk, 1989). Radiocarbon dating is based on measuring the decay of the
radioactive carbon isotope *C in organic material. However, radiocarbon cannot
be used to date samples between 350 years old and the 1960s due to the ‘Suess
effect’ (Worbes & Junk, 1989). The high price of radiocarbon dating also limits its
wider application (-US$ 400 per sample). In spite of these limitations, tree-ring
analysis in the tropics provides a nearly unexplored and unique opportunity to
assess long-term patterns in tropical tree growth.

Figure 1.1 Schematic overview of drivers of long-term changes in tropical forests and the proposed
methods to assess them. Several global change factors (1.) have been suggested to drive growth changes in
tropical forest, e.g., rising ambient CO,, increasing temperatures, and the unresolved (question marks)
changes in rainfall and nutrient deposition. Factors related to forest history (2.) may also induce growth
change, such as recovery from large-scale disturbances (e.g., forest fires and blowdown events). These
changing factors affect tree growth (3.) over long timescales, and tree-ring analysis (4.) can be used to
assess these long-term changes in tree growth.
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1.3 Timber exploitation

Worldwide, more than 400 million hectares of tropical forests are destined for
selective logging (Blaser et al., 2011). Timber exploitation obviously disturbs these
forests, but damage is limited in well-managed selectively logged forests (e.g.,
using reduced impact logging; Valle et al., 2007) and these forests retain large
carbon stocks after exploitation (Sist et al., 2014). In Africa the area of certified
production forests (e.g., FSC, PEFC, OLB, etc.) more than tripled between 2005
and 2010, from 1.48 to 4.63 million hectares (Blaser et al., 2011). Under such
certification schemes logging companies are required to evaluate whether species
are exploited sustainably and if not the case, adapt their logging scheme. However,
the data needed to assess this sustainability — growth, mortality and regeneration
rates of trees — are scarce, and especially so for African species (Picard et al., 2010).
Tree-ring analysis provides lifetime species-specific growth data that can be
used to improve the projections of how much timber will be available at the next
logging cycles. Despite the relevance of such calculations for sustainable forest
management, they have rarely been performed African timber species (Putz et al.,
2012; De Ridder et al., 2013b). This is surprising, given the knowledge that many
African timber species produce tree-rings (Mariaux, 1967; Détienne et al., 1998).
More studies that evaluate timber exploitation are thus urgently needed given
the importance of sustainable management for conserving forested areas and
maintaining biodiversity of tropical forests (Edwards et al., 2011; Putz et al., 2012).

1.4 Detecting long-term growth trends

Tree-ring analysis provides long-term growth data that cover the entire lifespan
of trees. These lifetime growth data contain long-term trends in growth that
reflects the ontogenetic development of an individual or a species, i.e., an age/size
growth trend (Figure 1.2). To detect long-term trends in growth rates measured
from tree rings it is essential to first account for this species’ age/size trend.
Multiple growth-trend detection methods (GDMs) exist to disentangle age/
size trends in growth from long-term growth changes. Yet the trend-detection
capacity of these methods has never been assessed and these methods strongly
differ in approach and assumptions, with possible implications for their output.
Given the large differences in approach between methods, it is pertinent to
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evaluate whether they yield consistent output when applied on a single dataset,
and to assess the sensitivity, reliability and accuracy of these methods to detect
growth trends. Although individual GDMs have been evaluated and weaknesses
have been noted for several of them (e.g., Esper et al., 2003; Biondi & Qeadan,
2008; Briffa & Melvin, 2011), only rarely have studies applied and compared
multiple methods (e.g., Briffa et al., 1992; Esper et al., 2010; Andreu-Hayles et al.,
2011). A critical comparison and evaluation of the most commonly used trend-
detection methods in tree-ring research is therefore needed.

Figure 1.2 Lifetime growth trajectories measured from tree rings for the tropical tree species Terminalia
ivorensis, from Southwest Cameroon. Each grey line represents the lifetime growth trajectory of an
individual tree; black line shows the average age/size trend for the species (for >5 samples)

1.5 Main objectives of this study

In this thesis I apply a pantropical approach using tree-ring analysis to assess
long-term changes in growth of tropical forest trees. Tree-ring analysis was used
to measure long-term growth rates of ~1350 trees of different species coming
from three sites across the tropics. Trends in growth over the last two centuries
were then analysed using one established an one new trend-detection method.
Additionally, I applied the long-term growth data from rings to improve the
evaluation of forest management practices in Cameroon.
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The main objectives of this thesis were: (1) to assess the potential for
using tree-rings in a wet tropical forest in Central Africa; (2) to project timber
yields in the next logging round for four Cameroonian tree species; (3) to
evaluate the sensitivity and accuracy of four commonly used methods to detect
long-term trends in tree-ring data; and (4) to detect whether growth rates of
forest trees have changed over the past ~150 years for sites in Bolivia, Cameroon
and Thailand.

1.6 A pantropical approach

This thesis was embedded in the TROFOCLIM project led by Pieter Zuidema.
The goal of this project was to use tree-ring analysis to detect, explain and
predict the long-term effects of climate change on tropical tree growth and
dynamics. Trees were sampled in three forest sites across the tropics and also
includes two other PhD theses. Sample collection was divided among the three
PhD projects and the three sites: in Bolivia (samples collected by Peter van der
Sleen), Cameroon (by me) and in Thailand (by Mart Vlam). At each site, around
500 trees of four to five species were collected as stem discs and increment cores.
The main criteria for selecting these species were that they showed visually
identifiable rings and were present in adequate abundance in the forest to allow
the collection of approximately 100 trees per species. Together, this set of species
represent various families, various leaf phenology characteristics and different
ecological guilds: from shade-tolerant species to light demanding long-lived
pioneers (Table 1.1). In all study sites, we sampled trees in old-growth forest
using an identical sampling scheme, in which trees of all sizes were collected
randomly inside a large area of forest (of 144-297 ha). This approach resulted in
a large dataset that allows to assess a broad array of ecological questions at a
pantropical scale. The three dissertations embedded in the project focussed on
different themes: on long-term growth changes (this dissertation); on the effect
of past disturbances on present-day forest dynamics (Vlam, 2014); and on the
physiological and environmental drivers that may have affected tropical tree
growth (van der Sleen, 2014).
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Chapter 1

1.7 Study sites

We sampled trees from undisturbed tropical forests on three continents: South
America (in Bolivia), Africa (in Cameroon) and Southeast Asia (in Thailand). In
Bolivia, wood samples were collected in the ‘La Chonta’logging concession, situated
at 15.84° S, 62.85° W, ca. 300 km northeast of Santa Cruz de la Sierra (Figure 1.3).
The forest at La Chonta is a semi-deciduous moist forest, on the transition between
dry-forest (Chiquitano) and moist Amazonian forests (Pefia-Claros ef al., 2008).
Precipitation in the region is unimodal, with an annual average of 1580 mm and
a four month dry season (with <100 mm rainfall) from May to September (Figure
1.3). Around 1992 the area was selectively logged for the commercially valuable
broad-leaf mahogany — Swietenia macrophylla (Gould et al., 2002). That extraction
was at a very low intensity (ca. 1 m*/ha) and we have not found any signs of logging
operations in our study area (e.g., old stumps or remains of logging roads).

Figure 1.3 Locations of the study sites in Bolivia, Cameroon and Thailand and their climate diagrams. In
Bolivia, samples were collected inside the La Chonta logging concession; in Cameroon inside the TRC
11.001 concession; and in Thailand inside the Huai Kha Khaeng Wildlife Sanctuary (HKK). Stars indicate
the approximate location of the sites, which were all located inside wet tropical forests (>1500 mm rainfall
year?; dark grey areas). Sources of climatic data were: in Bolivia, precipitation data from La Chonta
sawmill weather station (30 km to the north of the study site; covering the period 1993-2007) and
temperature from Ascencién de Guarayos (60 km to the west; 1987-2006); for Cameroon the average
precipitation and temperature data from the Bulu meteorological station (40 km to the south) and Mamfé
Airport weather station (40 km to the north); and for Thailand, precipitation and temperature data from
Nakhon Sawan weather station (100 km to the east). Climate diagrams cf. Walter and Lieth (1960), with
dotted area indicating dry season (rainfall<temperature), and black area the rainy season (>100 mm
month?).
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In Cameroon, samples were collected inside the Forest Management
Unit 11.001 of the logging company Transformation REEF Cameroon (TRC,
2008). The area is situated in the Southwest region, at 5.23° N, 9.10° E (Figure
1.3), and is adjacent to the Korup National park. Vegetation consists of semi-
deciduouslowland rainforest of the Guineo-Congolian type (Kenfack et al., 2006).
Precipitation is unimodal, with an annual average around 4100mm (Nchanji
& Plumptre, 2003) and a three-month dry season from December to February
(Figure 1.3). Although the North-Western part of the concession was previously
exploited in the 1980s, our study area consisted of primary forest (TRC, 2008)
without signs of any previous exploitation.

The study site in Thailand was situated in the Huai Kha Khaeng
Wildlife Sanctuary (HKK), at 15.60° N 99.20° E, around 250 km northwest
of Bangkok. The vegetation at HKK consists of a mosaic of seasonal dry
evergreen forest with mixed deciduous forest (Bunyavejchewin et al., 2009).
Precipitation is unimodal, with an annual average of 1473 mm and a 4-6
months dry season from November to April (Figure 1.3). There is almost no
human interference in HKK and no logging activities are known to have
taken place in the study area.

1.8 Thesis outline

The main objective of this thesis is to use long-term growth data from tree-
ring analysis to assess growth changes in tropical forest trees and improve
the analysis of sustainability of timber exploitation. The first step when
applying tree-ring analysis in the tropics is proving the annual character of
the measured tree-rings. In CHAPTER 2 of this thesis, I therefore evaluate
whether tree rings are formed annually by trees growing in a wet African
tropical forest. For this purpose, I collected and prepared wood samples
of 21 commercially exploited timber species and evaluate the presence
of anatomical structures on the wood that indicate ring boundaries. On a
subset of five species I analyse whether these ring boundaries are formed
annually using radiocarbon bomb-peak dating.

In CHAPTER 3, I apply the growth data obtained from tree-ring
analysis for four Cameroonian timber species to forecast future logging yields
for these species The main goal of this chapter is to evaluate whether logged

19



Chapter 1

volumes can be sustained in the next logging round. Additionally, I assess
the effect of changing the logging cycle length and of using species-specific
logging intensities on these yield projections.

In CHAPTER 4, I use growth data from the Thai species Melia azedarach,
combined with a modelling approach to assess the strengths and limitations of
four commonly used trend-detection methods. For this purpose I first evaluate
the consistency in the output of these methods by applying them to detect growth
trends in the M. azedarach data set. Next, I simulated tree growth trajectories
under different growth-trend scenarios, with imposed increasing and decreasing
trends and a no-trend scenario. By applying the four trend-detection methods
on these scenarios, I assess each method’s sensitivity, accuracy and reliability to
detect long-term trends.

In CHAPTER 5, growth trends in 13 tropical tree species from three
study sites located across the tropics are assessed. Using nearly all the tree rings
measured in this study — nearly 100.000 — and applying the two most suitable
trend-detection methods, I assess whether long-term growth changes have
occurred on for the study species. Alongside the species-level trend analysis, I
assesstrends aggregated per site and across all sites. These aggregated responses
show whether growth changes are pervasive across species and sites and, if so,
provide evidence for an external factor changing tree growth over the scale of
centuries.

CHAPTER 6 provides a general discussion of the main findings. In
this chapter I summarize the main findings of each chapter and discuss their
consequences. Then I provide an overview of the main methods used to detect
changes in tropical forests and provide recommendations on how to integrate
them.
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Chapter 2

Abstract

Implementing sustainable forest management requires basic information on
growth,ages, reproductionand survivalofexploited tree species. Thisinformation
is generally derived from permanent sample plots in which individual trees are
monitored. Accurately estimating growth rates and especially tree ages from
plots is however challenging, as plots often contain only few individuals of the
exploited species and monitoring periods cover only a fraction of the lifespan
of most trees. Alternatively, tree-ring analysis is increasingly used to obtain
accurate age estimates and growth rates for tropical tree species, especially in
regions with seasonally harsh conditions. However, for species from wet tropical
forests (>4000 mm yr rainfall) few tree-ring studies exist. Under persistent high
levels of rainfall, formation of distinct tree rings is uncertain due to the lack of
strong seasonal variation in climate factors. Here we evaluated the potential of
applying tree-ring analysis on commercial tree species in a wet tropical forest
in Central-Africa. For this purpose we screened the wood anatomy of 22 tree
species for the presence of tree-ring structures and, on a subset of five species,
we assessed crossdating potential and evaluated the annual character of tree-
ring formation by radiocarbon dating. A total of 14 of the 22 tree species showed
distinct tree-ring boundaries. Radiocarbon proved annual tree-ring formation
in four of the five tested species. Crossdating between trees was problematic for
all species and prohibited to exactly date each detected ring and build tree-ring
chronologies. We also show that diameter growth rates vary strongly between
and among species, with important consequences for the calculation of future
timber yields. Tree-ring analysis can thus be applied on tree species growing
in wet tropical forests to obtain growth rates. We argue that tree-ring analysis
should actually be applied on more tree species from different areas to obtain
accurate, site specific growth data. This data is urgently required to design and
improve sustainable forest management practices.

Keywords: Tree-ring analysis; tropical wet forest; timber species; forest
management; radiocarbon dating; Cameroon
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Tree-rings in an African wet tropical forest

2.1 Introduction

While constituting the world’s second largest tropical forest belt, the West
and Central African rain forests are relatively poorly studied. Over 44 million
hectares of these forests have been designated for selective logging (Bayol et al.,
2012). Sustainable management of these forests is hence essential to ensure a
continued supply of timber without affecting their services and functions (e.g.,
carbon retention). Planning sustainable forest management requires basic
ecological information of the exploited species (e.g., age, growth trajectories,
regeneration and survival). This information can for instance be used to calculate
future timber yields in selective logging operations (e.g., Rozendaal et al., 2010b).
Despite the relevance for designing and evaluating forest management, such
calculations have only been performed for a limited set of tropical tree species
worldwide and are almost absent in Africa (Putz et al., 2012; De Ridder et al.,
2013b). This paucity of studies is worrisome seen the importance of and great
public attention given to sustainable management of (African) tropical forests.
In tropical forestry research, basic ecological information on exploited
tree species — diameter growth rates and ages — is commonly obtained from
measurements of trees in Permanent Sample Plots (PSPs). The contribution
of PSPs to providing this information on African timber species has, however,
remained very limited. PSPs are still scarce in tropical Africa (Verbeeck et al.,
2011) and the uneven geographical distribution of PSPs implies that information
on commercially important forest areas is missing (Picard et al., 2010). In
addition, most PSPs are small, typically one hectare, and therefore contain only
few individuals of commercial tree species, which typically occur at densities of
<s trees ha? (Poorter et al., 1996; Hall et al., 2003). And finally, the monitoring
period of most PSPs spans just a fraction of the ages of trees, often resulting in
biased tree-age estimations (Martinez-Ramos & Alvarez-Buylla, 1998) leading to
alack of accurate long-term data on ages and growth of commercial tree species.
An alternative and relatively fast approach to obtain tree ages and growth
data is the use of tree-ring analysis (Brienen & Zuidema, 2006a; Schongart et al.,
2006; Rozendaal et al., 2010b). Data obtained from tree rings typically consider
information on growth across the entire life-span of trees and can thus be used
to calculate ages and growth trajectories of logged trees. These data can also be
used to calculate ages of trees to reach the legally set logging diameters (minimum
cutting diameter, MCD). For forest management, tree-ring analysis can thus be
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used to supplement data from PSPs. In Africa, tree-ring studies have mostly been
performed in dry, sub-tropical areas outside important wood-producing areas
(e.g., Dunwiddie & LaMarche, 1980; Till & Guiot, 1990; Gourlay, 1995; Stahle et
al., 1999; Tarhule & Hughes, 2002; Wils et al., 2010; Wils et al., 2011). Despite the
knowledge that many commercial tree species in tropical Africa form annual
rings (Mariaux, 1967; Détienne, 1989), tree-ring analysis has hardly been applied
to aid forest management in West and Central Africa (De Ridder et al., 2013b;
Gebrekirstos et al., 2014) and never so in wet forests of these regions.

Working with tree rings in tropical wet forests presents specific
challenges. Under such persistently wet conditions, growth of trees has suggested
to be continuous (Raven et al., 1999) and distinct annual tree rings to be absent
(Swaine, 1994; Kurokawa et al., 2003). Although annual tree-rings formation has
been proved for species growing in wet tropical forests (Fichtler et al., 2003), the
absence of strong growth-limiting environmental factors can result in only weak
variation in cambium activity. This weaker cambium activity with increasing
precipitation levels may thus lead to less variation in wood anatomy and hence
in tree-ring visibility (Moya & Tomazelo-Filho, 2009). Lack of a growth-limiting
factor that synchronises cambium activity in a given species also leads to varying
growth patterns among individual trees, as local growing conditions are likely
more influential than climate factors. This reduction of the ‘common signal’ in
tree growth also affects crossdating and hampers chronology building for tree
populations growing under very wet conditions (Fritts, 1976). Thus, for tree-ring
studies in wet tropical forests, identifying ring boundaries and investigating
their annual character is essential prior to obtaining growth data and tree ages.

Here we present results of a tree-ring study on commercial tree species
in a wet (~4100 mm rainfall.year?) lowland tropical forest in the Southwest
province of Cameroon. We first performed a screening for tree-ring boundaries
in the wood of 22 commercial species. We expected to find distinct tree-ring
boundaries in several species. The presence of a dry season and the seasonality
in phenology (15 of the 22 species have a (brevi-)deciduous character) may induce
periodic cambial dormancy, causing the formation of tree-ring boundaries. Next,
we performed a more detailed analysis on a subset of five species showing clear
tree-ring boundaries. We assessed the crossdating potential of these species
and tested the annual character of tree-ring formation by radiocarbon dating.
Finally, we described diameter-growth patterns and determined maximum tree
ages and ages at minimum cutting diameters for this subset of species.
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2.2 Materials and Methods

Study area

Samples were collected inside the Forest Management Unit (FMU) 11.001, of
Transformation REEF Cameroon (TRC, 2008). This FMU is certified by the Forest
Stewardship Council (FSC) and is located in the Southwest Region of Cameroon,
between 5°23'N, 9°09’E and 5°23'N, 9°12’E, adjacent to Korup National Park (Figure
2.1). The vegetation of the region consists of semi-deciduous lowland rainforest
(~200m a.s.l.) of the Guineo-Congolian type (cf. White, 1983), dominated by
Leguminosae—Caesalpinioideae. Soils in the area are deep, skeletal (lithosols),
with high sand content and a low pH (Gartlan et al., 1986). Due to leaching by
the high rainfall, soils are nutrient poor and only a thin organic layer is present
(Newbery et al., 1997). Regional climate is equatorial, with an unimodal rainfall
distribution and a dry season from December to February (monthly rainfall
<6omm, cf. Worbes, 1995). Rainfall amounts vary between nearby weather
stations: at the Bulu station (40 km to the South of the study area) annual rainfall
averaged 5220 mm, whereas at the Mamfé Airport station (40 km to the North)
it averaged 2920 mm (Figure 2.1). Although total rainfall amounts vary between
stations, both stations show an unimodal rainfall distribution. At our site, we
expect annual rainfall to be intermediate, and similar to the 4082 mm measured
at the Nguti weather station, located 27 km to the East (data not available;
Nchanji & Plumptre, 2003). Temperature data was only available for the Mamfé
station and shows little variation between months: maximum temperature
averaged 30.2°C and minimum 23.7°C. A climate diagram for the Mamfé station
is presented in Figure 2.1.

Study species, sample collection and preparation

Between June 2010 and May 2012, we collected samples of 601 individuals
belonging to 22 tree species (Table 2.1). Nearly all 22 species belong to the top-35
most logged species in Central Africa (Ruiz-Pérez et al., 2005) and commercial
names, guild, distribution and uses are given in Table 2.1. We collected cross-
sectional samples (discs) from 177 felled trees and three to four increment cores
each from 424 standing trees using 5.15 mm increment borers (type Suunto and
Haglof). Samples were taken at 1 m stem height or above anomalies or buttresses.
Each sampled tree was geo-referenced (Garmin GPS60X) and we measured
diameter at breast height ( dbh) using a diameter tape.
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Figure 2.1 (A) Map of study site: 2012 cutting block (black) of the Forest Management Unit 11.001 (light
grey). Korup National Park (hatched), Nigerian border (dark grey), major villages, and roads are also
shown. Inlay shows the location of the study site in Cameroon. (B) Climate diagram for Mamfé Airport
weather station (cf. Walter & Lieth, 1960; period 1968—2009) indicating dry season (rainfall<temperature,
dotted area) and rainy season (>100 mm month?; black area).

About 90% of the samples were collected in a stratified random
sampling design, inside an unlogged and seemingly undisturbed area of the
FMU (TRC, 2008). For this purpose, we installed circular plots of c. 1 hectare
at random coordinates inside 16 cells of 300 x 300m (located in a virtual grid
of 4 x 4 cells). Inside these plots, all trees >5 cm dbh of our target species were
sampled. The remaining samples were collected non-randomly, from large trees
or from individuals of less abundant tree species. These samples were collected
to increase the amount of species and the amount of large and presumably old
trees in our analysis. For some rare species we collected only a few individuals or
only increment cores, as rare species were spared from logging or because there
was no commercial demand at the time (Table 2.2).

To allow inspection of tree-ring structures, all samples were air dried.
Discs were polished with increasingly finer sandpaper, from grain 40 up to 1000,
and increment cores were either polished or cut using a large sliding microtome
(Gértner & Nievergelt, 2010).
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Tree-ring analysis

We investigated the potential for tree-ring analysis of the 22 commercial tree
species (henceforth called ‘screened species’) by assessing the presence of
distinct tree-ring boundaries. On a subset of five species, the ‘subset species’,
we performed a detailed analysis to assess their cross-dating potential, test
the annual character of tree-ring formation by radiocarbon dating, and assess
their general growth patterns. The subset species were selected based on the
presence of clear tree-ring structures, tree abundance in the forest (sample size
>60 individuals), currently being logged in the study area, and the possibility
of extracting increment cores, i.e. wood density neither too high nor too low.
Four species fulfilled these criteria: Brachystegia eurycoma Harms, Brachystegia
cynometroides Harms, Daniellia ogea (Harms) Rolfe ex Holl. and Terminalia ivorensis
A. Chev. For these species we collected discs and cores of 62 to 128 individuals per
species (Table 2.2). For a fifth species, Entandrophragma utile (Dawe & Sprague)
Sprague, which was not very abundant but known to produce very clear tree-
rings (Détienne et al., 1998), we also sampled 10 discs.

Screening for tree-ring structures

After surface preparation, we evaluated, both macroscopically and under a
stereo-microscope (magnification 16-40x, Leica) whether continuous tree rings
could be identified around the stem circumference. We classified tree-ring
structures and wood anatomical markers for ring boundaries in our species
following Coster (1927) and Worbes and Fichtler (2010) in the following four
types: (A) variations in wood density, (B) boundaries marked by a marginal
parenchyma band, (C) repeated patterns of fibre and parenchyma bands, and
(D) variation in vessel distribution and/or size. By following wood-anatomical
markers around the circumference of discs, we evaluated their continuity and
screened for the occurrence of phenomena that can obscure ring detection.
Such phenomena include the presence of wedging rings and intra-annual
growth variations. Wedging rings are distinct tree rings that merge (two or
more rings join) on certain parts of the stem circumference, induced by local
differences in cambial activity. Ring wedging often occur in slow growing
species or on very eccentric stem disks (Wils et al., 2009). Intra-annual growth
variations are growth variations that can, in some species, resemble true ring
boundaries and therefore lead to ring-misdetection. Characteristics of these
intra-annual variations vary between species depending on their specific wood
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anatomy and may consist of bands of thick-walled fibres (density variations) or
be characterised by the presence of (discontinuous) parenchyma bands. For all
screened species we systematically identified possible problems and provided
categories of the potential for tree-ring analysis using the following categories:
high (++), good (+), possible (+-), low (-) and not possible (--). This potential is
based on the presence and distinctness of tree-ring boundaries found in this
study, but also in previous tree-ring studies on the same species or congeners
(for more details, see Fact sheets in Appendix B).
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Tree-ring measurements and crossdating potential

We measured ring widths on scanned images of each tree of our subset species
using the software WinDendro Regular (version 2009b, Regent Instruments,
Canada). For cores, we scanned and measured all cores extracted from individual
trees; discs were scanned and rings were measured along four radii. For scanning
we used a resolution of 1600 t02400 dpi, on a flatbed scanner (Epson Expression
10000XL). To increase tree-ring visibility samples were often wetted and/or
scanned with a film of water on the scanner’s glass plate. For sample sections
with narrow rings, we marked rings under a microscope prior to scanning and
on discs we interconnected every 10" to 15 clear ring to facilitate measuring and
crossdating.

Crossdating consists of matching patterns of wide and narrow rings
between radii measured from the same tree, or between mean ring-width
patterns from different trees, to assign a calendar year to each detected
ring (Douglass, 1941). We crossdated ring-width series within and among
trees, both visually and statistically. Visual crossdating was performed
while measuring, by matching ring-width patterns of different radii, and by
ensuring thatinterconnected rings from different radii dated to the same year.
Statistical crossdating was performed in WinDendro (version 2009b; Regent
Instruments Canada Inc.), using the percentage of parallel run (ppr) between
radii, and using the software COFECHA (Holmes, 1983; Grissino-Mayer, 2001).
Successful crossdating among ring-width series of the same tree verifies
concentric patterns in ring formation. Crossdating of ring-width series of
different individuals of the same species becomes possible if radial growth of
different individuals is limited or driven by the same external factor (Cook &
Kairiukstis, 1990; Worbes, 1995). From these crossdated ring-width series, a
site chronology can be calculated that reflects the common variance in growth
of the tree species. Chronologies are usually calculated as annual averages of
standardised ring-widths series. We standardized averaged diameter-growth
series for each individual using 15-year cubic splines in COFECHA. Finding
correlations between a chronology and annually/seasonally varying climate
variables (e.g., precipitation in the rainy season) can be taken as strong
evidence that tree-rings are formed annually, in response to these variable.
Chronologies can then be used to calibrate the measurements of remaining
trees, by synchronising their growth with the chronology and searching for
mistakes in ring identification.
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To build a chronology for each of the subset species, we first excluded
all trees growing in the understorey (<50 cm dbh). Growth of these smaller trees
is strongly influenced by competition for light and this competition signal may
interfere with the climate-induced variation and thus hamper the detection of
common climate-related growth-signals. From these larger trees, we selected
the 10 individuals with the clearest tree-ring structures and highest within-tree
crossdating as a basis to build the chronologies (i.e., mostly excluding juvenile
trees and trees with phases of suppressed growth). We thus searched for the
common growth-signal between trees, from a subset of trees assumed to be
correctly crossdated and showing the strongest year-to-year variation in growth.
We also included individuals for which tree-ring measurements were proven
annual by radiocarbon dating (see below).

Radiocarbon dating

In the case of weak or absent common growth signals, the annual character
of tree-ring formation can be tested by radiocarbon dating, a dating method
independent of tree growth (Worbes & Junk, 1989). This method is based on
the peak in “C in the atmosphere caused by above-ground atomic weapon tests
(Nydal & Lovseth, 1983). To verify the annual character of tree-ring formation,
we applied the “C bomb-peak dating method on our subset species except for T.
ivorensis. Tree-ring formation for T. ivorensis had earlier been proven to be annual
(Détienne, 1989) and we assumed rings to be formed annually due to its strong
deciduous character in the study area.

Problematic tree-ring structures (e.g., vague or discontinuous rings)
are common in the tropical species and may hinder ring identification
(Worbes, 2002; Brienen & Zuidema, 2005). It is therefore important to identify
whether these structures are actual tree-ring boundaries or structures formed
by intra-annual growth variations. To identify these problematic structures,
we selected three individuals per species based on the ease of measurements
and the clarity of their tree-rings: one individual with ‘very clear’ rings and
good internal crossdating (usually a disc); one individual with ‘clear’ rings
and good internal crossdating but showing some problematic structures; and
a third individual showing several problematic structures (i.e., vague rings
or anomalous structures; usually cores). With this selection we expected
to prove the annual character of ring formation in these species (on the
‘very clear’ samples), while also being able to verify our definition of tree-
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ring boundaries and to quantify possible dating errors on the ‘normal’ and
‘problematic’ samples.

For each individual, we sampled three to four tree-rings that were pre-
dated by ring counting (and crossdating) and spaced eight to ten years apart.
From each ring, we collected 35-50 mg of wood to determine radiocarbon age. By
analysing samples from different years per individual, it is possible to identify
if and where errors in measurements have taken place. If all dates coincide
between pre-dated rings and “C measurements (margin of error +1 year),
rings are formed annually and no measurement errors took place. If a constant
discrepancy in measurements is found between all samples in one individual,
measurement errors occurred in the wood formed in more recent years (between
the most recent “C-dated tree ring and the bark). If a discrepancy is found
between samples, measurement errors occurred between the predated rings. By
going back to the original wood samples after “C dating, it is possible to identify
measurement mistakes and verify tree-ring boundary definitions. In the case
of discrepancies that cannot be solved, tree-ring formation can still be annual,
but measurement errors occur. Including the ‘problematic’ samples, with less
clear rings, allows for an estimation of the frequency of these measurement
errors. This estimation is calculated as the probability of ring misidentification
by dividing the number of misidentified rings by the period under analysis
provides (expressed in errors per 100 years, cf. Soliz-Gamboa ef al., 2011).

The fraction modern “C (F“C) was determined on the holocellulose
portion of the wood samples at the Center for Isotope Research at Groningen
University, following their protocol for Accelerator Mass Spectometry analysis.
We used the program CALIbomb (http://intcal.qub.ac.uk/CALIBomb) to
determine the date for the each F“C (+sd) value using the dataset corresponding
to our study region (NH_Zone 3; Hua et al., 2013). As a given radiocarbon
concentration may yield several possible calendar dates, we determined the
mostly likely date of each sample based on the dates of the other samples from
the same tree, i.e., subsequent samples from bark to center in one tree should
have subsequently older ages.

Growth patterns and ages to reach Minimum Cutting Diameters
(MCD)

For each of the subset species we calculated annual diameter increments as the
average growth of the differentradiimultiplied by two. Over- or underestimations
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in growth rates may arise from shrinkage of discs and cores or from measuring
tree-ring widths on irregular parts of the stem i.e., in buttresses. Therefore,
we applied a correction factor on the diameter increments, accounting for the
difference in diameters measured from rings and the diameters measured in the
field (cf. Brienen & Zuidema, 2006b). If information on the first formed rings
was missing, due to rot in the stem centre or the fact that the pith was not hit
when coring, we estimated the distance to the pith assuming a circular growth
pattern. To estimate the number of missing years, this distance was divided
by the average growth rate of the first five tree rings present in the sample.
Furthermore, tree ages presented here are slightly underestimated as ages were
calculated from samples obtained at approximately 1 m height. The time to reach
this height can vary between fast growing, often light demanding species (e.g.,
T. ivorensis) and slower growing, often shade tolerant species (e.g., D. ogea).

The corrected diameter growth rates were used to describe life-time
growth patterns of the subset species. First, we calculated for each species average
diameter growth rates (in cm/year) per tree age. This allows for the comparison of
patterns in growth rates, i.e., ontogenetic growth patterns between species. We
also compared these average growth rates with the rates used in Cameroon for
the calculation of future timber yields for these species (cf. MINEF, 2001). Finally,
we calculated average cumulative diameters (in cm) per age for each species and
used these diameter-age relationships to assess species-specific maximum (for
the fastest growing individual), minimum (for the slowest grower), and average
ages to reach MCD (as set by Cameroonian legislation for each species).

2.3 Results

Tree-ring structures and distinctness of ring boundaries

Here we discuss briefly the tree-ring structures of the screened species and
provide more detailed descriptions for the subset species. In the Supplementary
Material (Appendix B) we provide fact sheets for all screened species, with
descriptions and images of tree-ring boundaries, as well as information on
applicability for tree-ring analyses. Detailed anatomical descriptions of wood
characteristics are also available for most of the screened species in Détienne et
al. (1998), Richter and Dallwitz (2000) and on the InsideWood database (www.
insidewood.lib.ncsu.edu; Wheeler, 2011).
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Of the 22 screened species, 14 formed tree-ring boundaries of which
eight species showed a ‘good’ or ‘high’ potential for tree-ring analysis (Table
2.2). All four types of tree-ring structures were observed in the screened
species as well as combinations of structures. The most common tree-
ring structure was type B (marginal parenchyma bands), as found in most
Fabaceae and Meliaceae (Table 2.2). Two species - Pycnanthus angolensis
and Canarium schweinfurthii - showed relatively clear structures on freshly
sawn discs, but structures became unclear or disappeared after drying and
polishing. Working with these species might require a different preparation
approach (e.g., faster drying to avoid fungus infestations). Some individuals
of Staudtia kamerunensis and Gilbertiodendron dewevrei showed clear anatomical
structures. However, these structures were often discontinuous within
the individual (disappearing on parts of the circumference), while other
individuals completely lacked these structures. S. kamerunensis has been
suggested to produce annual tree rings in a drier forest (Worbes et al., 2003),
but ring formation may not be annual, or could be suppressed, under the high
levels of rainfall at our study site.

Of the five subset species, E. utile showed the most distinct tree-ring
boundaries (Figure 2.2), consisting of parenchyma bands (growth zone type B),
sometimes combined with repeated patterns of fibre and parenchyma bands
(type C). Some individuals showed large differences in growth rates between
radii (e.g., in trees with asymmetric centres, or with buttresses). In the shorter
radii, clarity of ring boundaries decreased and many wedging rings occurred,
often hindering ring identification.

T. ivorensis also showed very clear tree-ring boundaries that consisted of
wood density variations (marked by thick-walled fibers; type A), and variations
in vessels distribution and/or size (type D). Juvenile individuals were often
fast growing (>1 cm year™) and showed the most distinct rings. Growth rates
decreased with increasing diameter and rings became very narrow at large
diameters. These narrow ring were more difficult to distinguish and measure.

Tree-ring boundaries of D. ogea were also clear and consisted of thin (2-3
cells wide) parenchyma bands with sometimes variation in vessel distribution.
However, parenchyma bands were sometimes vague or disappeared on certain
parts of stem. Vague bands that disappeared along the circumference of the disc
or in one of the radii were considered to be intra-annual growth variations, and
thus, no true ring boundaries.
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For the two Brachystegia species, tree-ring boundaries consisted of a
thin parenchyma bands with lens-shaped vessels attached to it (closed triangles,
Figure 2.2). Both Brachystegia species also showed interconnected, eye-shaped
vessels without the thin parenchyma band (open triangles, Figure 2.2). These
interconnected vessels often occurred slightly before or after a tree-ring
boundary and were often discontinuous on parts of the circumference of the
stem. Due to their discontinuous character, we considered these structures to be
intra-annual growth variations.

For all our subset species, identifying tree-ring boundaries and ring
wedging was easier on discs, where individual rings could be followed, than on
cores and also easier for species with parenchyma bands than for T. ivorensis,
where ring boundaries are marked by thick-walled fibres. Furthermore, tree-
ring boundary distinctiveness decreased in more narrow rings: i.e., towards the
centre of trees (for the Brachystegia’s, D. ogea and E. utile) and towards the bark
(for T. ivorensis), or during periods of growth suppression. During these slow
growing phases, wedging rings were also more common.

Crossdating potential

We first crossdated radii within trees and then among trees (on both single radii
and on averages of radii per tree). Good internal crossdating was found for two
species: 77% of D. ogea trees and 61% of B. eurycoma showed high levels of internal
crossdating (i.e., a combination of well-matching long-term growth patterns and
high ppr values; Table 2.3). The high levels of within-trees crossdating for these
species, facilitated identifying intra-annual growth variations. However, on
cores it was not always possible to ensure whether these anomalous structures
were discontinuous over the entire circumference.

For the other species internal crossdating was less successful. Despite
the clarity in tree-ring boundaries, all E. utile trees showed medium internal
crossdating levels, i.e., matching growth patterns but low ppr rates. Growth
rates often showed a low degree of synchronous year-to-year variation
(complacent rings, cf. Stokes & Smiley, 1968) and crossdating was often only
possible using the interconnected rings on discs, especially in trees with
buttresses or asymmetric centres. For T. ivorensis, high levels of internal
crossdating were found in only 34% of trees, while 52% showed ‘medium’ levels of
crossdating. Juvenile individuals often exhibited complacent and wide rings (>1
cmyear?), but ring-width decreased with age, resulting in very narrow tree rings
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in large, old trees. Larger T. ivorensis individuals also showed more buttresses.
Rings were usually very clear in radii following buttresses, but wedging rings
occurred in the slow growing parts between buttresses. The wide and complacent
rings in juvenile wood and the slow growth with wedging rings in adult wood,
often hampered crossdating between radii. Again, crossdating was often only
possible using the interconnected rings on discs, or by matching the strong
ontogenetic growth trends in radii. The lowest levels of crossdating were found
in B. cynometroides: only 40% of the trees showed high within-tree crossdating
levels, whereas for 37% crossdating levels were low (poorly matching growth
patterns and low ppr). As most samples for B. cynometroides consisted of cores, it
was not possible - as in disc - to interconnect rings to solve crossdating problems.

Figure 2.2 Tree-ring boundaries of five tree species
from a wet tropical forest in Cameroon: A. Brachystegia
cynometroides, B. Brachystegia eurycoma, C. Daniellia ogea,
D. Entandrophragma utile, and E. Terminalia ivorensis.
Growth direction from left to right; black bar = 5 mm

scale, filled white triangles = annual tree-ring
boundaries, open white triangles = intra-annual
growth variations.
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Crossdating among trees, i.e., finding a common growth signal, proved
difficult for all species (Figure 2.3). The only species showing some degree of
synchronicity in growth was E. utile. Two individuals, for which tree-ring
formation was proven annual by radiocarbon dating (see section 3.2. below),
showed synchronous growth patterns between ca. 1974 and 1992 (Figure 2.3, black
lines). Remarkably, these trees showed a low-frequency synchronicity in growth
(~5-10 years) but no synchronicity in annual growth variation (Figure 2.3). B.
eurycoma, D. ogea, and T. ivorensis individuals showed no synchronicity in growth
at all and we did not search for common growth patterns in B. cynometroides due
to the uncertainties in measurement and low internal crossdating. Without a
common growth signal, it was impossible to crossdate samples and ascertain
dating of our rings was absolute. We were therefore not able to build chronologies

for any of the species.

Figure 2.3 Standardized (residual) diameter growth rates of five individuals with clear rings for
Brachystegia eurycoma, Daniellia ogea, Entandrophragma utile, and Terminalia ivorensis in a wet tropical forest
in Cameroon. Black lines represent individual trees correctly dated using radiocarbon dating (not applied
on T. ivorensis); grey lines represent other individuals showing clear rings (i.e., no doubtful structures and
good internal crossdating). Standardization performed with a 15-year cubic spline.
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Table 2.2. Growth-ring characteristics of 22 commercial tree species from a wet tropical forest in
Cameroon. Ring boundary codes: (A) wood density variation, (B) marginal parenchyma band, (C) patterns
of alternating fibre and parenchyma bands, (D) variations in vessels distribution and/or size, and (-) no
ring boundary. Total number of individual trees collected (and number of discs), leaf phenology,
difficulties and overall potential are also given. The five selected species for which further analyses were

done are in bold.

Species Tree-ring #trees Leaf phenology™ Difficulties™ Potential
boundary (asdiscs)

Afzelia bipindensis B 2.(2) Deciduous W +
Afzelia pachyloba B 2 (1) Deciduous w +
Bikinia le-testui B 10 (10) Evergreen C+D+S+W +-
Brachystegia cynometroides B 124 (4) Brevi-Deciduous ~ D+M+S+W  +-
Brachystegia eurycoma B 128 (32) Brevi-Deciduous D+M+S+W  +
Canarium schweinfurthii -/A 503) Deciduous n/a +-
Daniellia ogea B 105 (18) Deciduous D+S+W ++
Didelotia letouzeyi -/B 2.(0) Evergreen n/a -
Entandrophragma angolense B 1(0) Deciduous n/a ++
Entandrophragma candollei B 1(0) Deciduous n/a ++
Entandrophragma utile B 10 (10) Deciduous W+S ++
Erythrophleum ivorense D 15 (10) Deciduous w +-
Gilbertiodendron dewevrei B 10 (4) Evergreen n/a +-
Guarea thompsonii A 1(1) Evergreen n/a +-
Khaya anthoteca - 3(1) Evergreen n/a -
Lophira alata - 2.(2) Brevi-Deciduous n/a --
Nauclea diderrichii - 5(0) Evergreen n/a --
Pterocarpus soyauxii C+B 5(1) Brevi-Deciduous n/a +-
Pycnanthus angolensis -/B 30 (12) Brevi-Deciduous n/a +-
Rhodognaphalon brevicuspe -/A 5 (1) Deciduous n/a +-
Staudtia kamerunensis -/B 73 (13) Evergreen n/a +-
Terminalia ivorensis A+D 62 (52) Deciduous W+S +

* Phenology: deciduous: tree leafless for >4 weeks; brevi-deciduous: tree briefly or only partially leafless;

evergreen = trees without leafless periods.

** Difficulties: C = coring (wood too hard or to bristle), D = doubtful / vague ring-boundaries, M = rings
missed (“C analysis), S = periods of slow growth, W = wedging rings, n/a = not assessable
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Radiocarbon dating

The “C bomb-peak dating yielded variable results for the four tested species
(Figure 2.4). In E. utile, pre-dated ring measurements matched radiocarbon
ages in all cases and within the 1-year margin of error of radiocarbon dating.
This confirms annual ring formation for this species and shows that it also
produces reliable annual tree rings under very wet conditions. Close matches
between tree-ring and *C dates were also found for most measurements in D.
ogea, again confirming annual tree-ring formation. However, in the D. ogea tree
with problematic rings, a discrepancy of two years was found (points above the
diagonal; Figure 2.3), indicating that some of the marked structured were not
true ring-boundaries.

In most measurements for B. eurycoma we also found close matches
between the tree-ring dates and radiocarbon dates. We did, however, also find
discrepancies for B. eurycoma, with a maximum error of seven years (negative
sign indicates rings were missed). These discrepancies were present in the tree
with ‘difficult’ rings (measurements were shifted 3-5 years) and for the tree with
‘very clear’ rings. In the latter, discrepancies were present in the inner-most
rings, i.e., the juvenile wood), in a difficult part of the disc with slow growth.
Except for these rings in juvenile wood, the division into ring clarity was thus
reflected in the radiocarbon dating results.

Discrepancies between tree-ring dating and “C dating were found for
all three individuals of B. cynometroides. In this species, rings were missed during
measurements (points below the diagonal line, Figure 2.3) and the maximum
measurement error was 10 years. The division into ring clarity classes was
not reflected in the radiocarbon dating results for B. cynometroides: rings were
missed in all three individuals, but surprisingly dating was most accurate in the
individuals considered to have problematic rings.

We also calculated the probability of ring misidentification, to quantify
the frequency of measurement errors (errors per 100 years, cf. Soliz-Gamboa
et al., 2011). This probability was highest for B. cynometroides: -12.3% (i.e.,
there is a chance of missing a ring every ~8 years). For B. eurycoma the mean
misidentification probability was -3.1%, and for D. ogea +1.9% (Table 2.3). Results
of the radiocarbon dating and detailed figures per dated tree are given in the
Supplementary Materials (Appendix A).
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Figure 2.4 Comparison of dates from tree-ring measurements and “C bomb-peak derived dates for four
species in a wet tropical forest in Cameroon. Rings are formed annually when symbols are on the diagonal
Y=X line. Connected symbols represent measurements on the same individual. Three categories of tree-
ring clarity were distinguished: very clear - tree-ring boundaries were very clear with good internal
crossdating; clear - some doubtful structures but good internal crossdating; problematic — tree showing
typical problems for the species (e.g., vague or discontinuous rings). Detailed results provided in
Supplementary Materials Appendix A.

Growth patterns and ages at MCD

The five subset species showed large differencesin ages, growthratesandlifetime
growth trajectories. D. ogea and E. utile had the longest lifespans (>275 years old),
while the other three species reached maximum ages of 180 to 200 years (Table
2.3). Average growth rates (+ standard deviations) ranged between 0.43+0.35 cm
yr* for D. ogea and 0.96+0.71 cm yr? for T. ivorensis (Table 2.3). Lifetime growth
patterns also varied between species, with B. cynometroides showing rather
constant growth rates over time, while B. eurycoma, E. utile, and D. ogea presented
low juvenile growth rates that increased at intermediate ages, decreasing
again slightly for older trees. T. ivorensis trees exhibited an ontogenetic growth
pattern typical for light-demanding species, with high growth rates (>1 cm yr?)
for juvenile trees that strongly decreased with age (Figure 2.5). The presented
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growth rates of B. cynometroides likely overestimate actual growth rates because
of the high frequency of rings missed.

Growth rates also varied strongly within species, inducing large variation
in ages to reach MCD (Figure 2.6). For instance, T. ivorensis trees reached MCD on
average after 45 years, but ages varied more than fourfold, ranging from 21 to 91
years. In the slowest growing species, D. ogea, MCD was reached after 148 years on
average, but this ranged from 77 to 214 years (for all species, see Table 2.3).

Figure 2.5 Diameter growth rates vs. cambial age of five tree species from a wet tropical forest in
Cameroon. Each grey line represents diameter growth values of an individual tree; black lines show
average growth rates if >5 samples were available. Dashed lines show the growth rates for each species in
Cameroon used for timber yield calculations (cf. MINEF, 1999).
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Figure 2.6: Lifetime growth trajectories for five tree species in a wet tropical forest in Cameroon. Each
grey line represents the lifetime growth trajectory of an individual tree; black lines show the average
growth pattern if >5 samples were available; dashed horizontal lines indicate minimum cutting diameters
(MCD) and diagonal lines show the growth rates for each species in Cameroon used for timber yield
calculations (cf. MINEF, 1999).

Table 2.3. Growth and age characteristics of five selected commercial tree species from a wet tropical forest
in Cameroon. Number of trees collected, number of trees cored (3 to 4 cores per tree) and discs. Diameter
growth and age at Minimum Cutting Diameter (MCD) refers to the population average. Crossdating level:
high (well-matching growth patterns and high ppr), medium (matching growth patterns, intermediate
ppr), and low (poorly matching growth patterns and low ppr). Percentage of ring misidentification
(RMI): based on radiocarbon dating, is the average amount of misidentified rings divided by the period
of measurement (cf. Soliz-Gamboa et al., 2011). Positive values indicate that anatomical structures were
erroneously identified as tree-ring boundaries; negative values indicate that rings were missed.

Species #trees cores/discs Diameter growth AgeatMCD  Crossdatinglevel RMI
(cm/yr, +SD) (y, range) (high/medium/low) (in %)

Brachystegia 124 120/ 4 0.45+0.29 126 (58-154) 40% [ 23%[37%  -12.3

cynometroides

Brachystegia 128 96 /32 0.56+0.48 100 (48-135) 61%/33% | 6% 3.1

eurycoma

Daniellia ogea 105 87/18 0.43+0.35 148 (77-214) 77% [ 23% | 0% 1.9

Entandrophrag- 10 o/10 0.72+0.40 126 (79-203)" 0%/100% /0% <1

ma utile

Terminalia 62 10/52  0.96+0.71 45 (21-91) 34%/52%/14%  n.a.

ivorensis

*MCD = 60 cm, except for E. utile = 8ocm
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2.4 Discussion

We evaluated the potential to apply tree-ring analysis in a wet Central-African
lowland tropical forest. Even under wet tropical conditions, 14 of the 22 tree
species produced visible tree-ring boundaries. The annual character of tree-ring
formation was proven using radiocarbon dating for three species, while a fourth
species showed rings were frequently missed. Although clear and annually
formed rings were present in four species, we were unable to build chronologies.
Growth rates varied strongly between and within species, implying that different
species reach MCDs at different ages and that ages also vary strongly within
species.

Tree-ring boundaries and annual ring formation in wet tropical
forests

This study is one of the very few tree-ring studies performed in wet tropical forests
(>3000 mm yr-1; Zuidema et al., 2012) and the first one conducted in wet African
forests. Even under these wet conditions, tree-ring structures were formed in 14
of the 22 commercial tree species. Overall, most tree species forming tree-ring
boundaries were (brevi)deciduous, whereas evergreen species (e.g., K. anthoteca,
D. letouzeyi) and species with a very short leafless period (e.g., L. alata, P. angolensis)
mostly showed no or vague tree-ring boundaries. In about 36% of the screened
species (8 out of 22), the potential for tree ring analysis is good or high (+ or ++,
Table 2.2). This proportion is in accordance with studies from dry (Tarhule &
Hughes, 2002; Brienen et al, 2009) and humid forests (Beltrin Gutiérrez &
Valencia Ramos, 2013), suggesting that the potential of tree-ring analysis for wet
forest is similar to that of drier environments. Anatomical wood descriptions exist
for most of the 22 tree species (Richter & Dallwitz, 2000) and annuality of ring
formation had been studied for several of them, albeit in drier sites (Détienne
& Mariaux, 1977; Détienne et al., 1998; Worbes et al., 2003). For 10 of the screened
species this is the first time the potential for tree-ring analysis is evaluated (Table
2.1) and for three species - B. eurycoma, D. ogea and B. cynometroides - this is the first
time the annual nature of ring formation is evaluated.

Radiocarbon dating confirmed annuality of tree-ring formation but
also showed measurement mistakes or occasional absence of (distinguishable)
tree-ring boundaries occurred (Figure 2.4). This independent dating allows
for correcting tree-ring boundary markings on samples. However, in both
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Brachystegia species, we were unable to locate all rings missed. Growth rates for
these species are thus somewhat overestimated, especially for B. cynometroides
(Table 2.3). The typical slow growth rates of this species, combined with the
low rates of internal crossdating further hampered detection of mistakes and
probably increased ring misidentification. On the other hand, points within
individuals were mostly parallel to the x=y line in Figure 2.3, indicating that
the number of rings between (radiocarbon dated) samples within a tree was
estimated quite accurately. Although ring misidentification is thus common,
we believe that ring measurements in B. cynometroides can still provide valuable
basic information on the growth rates of this species. It is important to work
with discs instead of cores to reduce measurement errors. Alternatively, a
correction factor to account for ring misidentifications could be applied (e.g.,
by decreasing growth rates of B. cynometroides with 12.6%), but establishing a
reliable correction factor would require (costly) radiocarbon analyses on many
more individuals.

In D. ogea, intra-annual growth variations were present and not always
identified. Identifying these structures was often difficult, especially on cores
or during periods of slow growth (e.g., juvenile rings). Growth rates could thus
be slightly underestimated (as indicated by the radiocarbon dating), however
we expect the high levels of internal crossdating to have limited the amount of
misidentified rings.

For all subset species we found problems common to tropical
dendrochronology: small, wedging or vague rings and intra-annual structures
resembling tree-ring boundaries. These problems have been reported in several
studies and have led previous researchers to recommend to perform ring
measurements on discs rather than cores (Worbes, 2002; Brienen & Zuidema,
2005), which we reiterate here.

Chronology building and asynchronous growth under wet
conditions

Despite the high levels of internal crossdating and the proven annual ring
formation for several species, we were unable to crossdate measurements
among trees. Chronologies of E. utile have been successfully built in drier forest
areas (Nzogang, 2009). However, in this study crossdating among individuals
was weak and we only observed synchronicity at 5-10 year cycles for individuals
standing close to each other. Growth variation might thus be driven by
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other factors: local factors (e.g., soil depth, water table), internal cycles (e.g.,
reproduction) or canopy dynamics (Fritts & Swetnam, 1989).

The strong ontogenetic growth trend in T. ivorensis and the difficult
identification of rings near the bark made crossdating in this species harder.
Difficulties to build chronologies using a few discs of young (~30 years) trees
were also reported for the congener T. superba (Couralet, 2010), but chronologies
have been built recently for that species (De Ridder et al., 2013a). In the Congolese
Mayombe forest, T. superba produced clear rings and growth correlated to local
precipitation, whereas in the wetter forests in Ivory Coast, ring clarity was lower
and growth showed no correlations to local climatic variables (De Ridder et al.,
2013a). A similar decrease in ring clarity with increasing precipitation was also
reported for Gmelina arborea in Costa Rica (Moya & Tomazelo-Filho, 2009). T.
ivorensis is most commonly found in dryer forests (1250-3000 mm; Lemmens
et al., 2012) and may thus be growing on the wetter edge of its distribution in
our study site. Precipitation thus may not limit growth, thwarting the common
growth signal (Cook & Kairiukstis, 1990). The combination of complacent rings,
irregular growth and lower ring clarity may thus have hampered detecting
common growth signals.

Despite the many discs and the good internal crossdating of D. ogea
and B. eurycoma, we were unable to crossdate measurements among individuals.
Growth was not even synchronous between trees growing near one another:
two fast growing B. eurycoma individuals (Be169 and Be170) of similar size (~60
cm diameter), showing very clear rings, high levels of internal crossdating and
growing ~30m apart did not show synchronous growth patterns. Chronologies
have been built for congeners from drier forests (D. oliveri, Schongart et al.,
2006) or savannah (B. spiciformis, Trouet et al., 2006), suggesting — again — that
the high amounts of rainfall in our study site reduce the synchronicity in growth.

Are there other factors that could explain this apparentlack in acommon
growth signal? We believe that not only the high levels of rainfall, for some
species the wetter edge of their distribution could obscure the common growth-
signal (cf. Cook & Kairiukstis, 1990), but also (observed) asynchronous leaf-fall.
During the dry season, individuals of B. eurycoma, B. cynometroides, D. ogea, and T.
ivorensis, growing near each other could be simultaneously in different stages of
leaf change (i.e., with old leaves, without leaves and with new leaves). This could
cause cambial activity - and thus growth - to be asynchronous between trees,
especially at the beginning of the growing season.
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Building chronologies for tree species in the wet tropics is thus
challenging, even if those species possess clear rings that are formed
annually. The cycles of (inter)annual cambial activity and wood formation
are poorly understood, while forming the basis for tree-ring studies. Filling
this knowledge gap requires a more intensive evaluation (than we have done)
of tree-ring formation. This evaluation should go further than descriptions
of tree-ring boundaries (cf. Alves & Angyalossy-Alfonso, 2000; Richter &
Dallwitz, 2000; Beltran Gutiérrez & Valencia Ramos, 2013) and should include
periodic dendrometric measurements, like summarized for South American
woody species by (Callado et al., 2013). This can be done either by periodic
cambial wounding (e.g., Mariaux, 1967; Trouet et al., 2012; Tolera et al., 2013)
or successive micro-sampling for evaluations of cambium activity throughout
a given period (cf. Amobi, 1973; Krepkowski et al., 2011; Volland-Voigt et al.,
2011). This would be especially insightful when combined with phenological
observations (i.e., leave flushing, fruiting; e.g., Borchert, 1999) and high-
resolution meteorological data. Further techniques that show promising
results for tropical tree-ring studies should also be explored. For instance,
X-ray densitometry can be applied to aid in recognizing tree-ring boundaries
(Worbes, 1995) and the analysis of stable isotope ratios (e.g., carbon and oxygen)
has shown promising results in tropical species as a proxy to reconstruct
climate (cf. Brienen et al., 2012b).

Application for forest management studies

Tree-ring analysis can be applied in wet tropical forests to obtain local and
species-specific growth data and tree ages that can be used to plan and evaluate
forest management. In Cameroon, management decisions (e.g.,, MCD and
logging intensities) are based on timber yield calculations using the software
TIAMA (MINEF, 1999). These calculations are done using legally set average
growth rates for each species, established by the Ministry of Forestry and
Wildlife in Cameroon. We argue that three potential problems arise when using
set growth rates to calculate future timber yields: (1) set rates may be incorrect
(i.e., too high or too low), potentially leading to incorrect regulations on logging
intensity or length of cutting cycle; (2) ontogenetic growth patterns are ignored
when using a single life-time average growth rate for a given species; and (3)
persistent differences in growth between individuals are ignored if one species-
average value is used.
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First, we found discrepancies between the set growth rates and
the actual (measured) values for the subset species. The legally set rates in
Cameroon for these species are: 0.5 cm yr* for B. eurycoma, B. cynometroides, and
E. utile and at 0.7 cm yr* for T. ivorensis and D. ogea (MINEF, 2001). B. eurycoma,
B. cynometroides and E. utile showed similar growth rates to the set rates. On the
other hand, D. ogea showed rates that were 39% lower than the set rates and T.
ivorensis 47% higher. These discrepancies between legally set and actual growth
rates may lead species to be under- or overexploited. If growth rates used in yield
simulations are higher than actual rates, future timber yields for a species will be
overestimated. This may lead to the species being exploited at higher intensities
than it is able to regrow. The discrepancies found here highlight the importance
of measuring accurate growth rates for each managed species. Preferably, these
rates should be measured locally, as rates vary within species for trees growing
in different areas (Therrell et al., 2007). Growth rates found here were, however,
comparable with those reported for the same species at other sites (cf. Nzogang,
2009), for congeneric species (Worbes et al., 2003; Schongart et al., 2006; Trouet
et al., 2006; De Ridder et al., 2013b) and for other tropical wet forest tree species
(e.g., Fichtler et al., 2003; Brienen & Zuidema, 2006a).

Second, ignoring the ontogenetic growth trend found for many species
may also lead to incorrect management decisions. For instance in a light-
demanding species as T. ivorensis, growth rates decrease strongly with age. Until
an age of ca. 65 years, the average growth rate for T. ivorensis trees is higher than
the set rates (Figure 2.5). At this age though, most trees have already reached
the MCD (Figure 2.6). Growth in young years is thus relatively more important
for wood production than at higher ages. This is the opposite for more shade
tolerant species as B. cynomtroides and D. ogea, that show increasing growth rates
with age.

And finally, the fan-shaped growth trajectories found here (Figure 2.6)
indicate that persistent differences in growth rates are present in our species.
These differences strongly influence size—age variations within a species (Bullock
et al., 2004) and may lead to underestimations of estimated future timber yields
(Brienen & Zuidema, 2007). Calculation of timber yields should thus include this
variation and not be calculated using only average growth rates. Growth data
presented here contain this variation and can thus be used to produce more
accurate and species-specific estimations of future timber yields.
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Outlook and recommendations

Here we show for the first time the potential for tree-ring studies in an African
wet tropical forest. Annual ring formation in wet tropical forests has been shown
before (Diinisch et al., 2003; Fichtler et al., 2003), but studies in (non-flooded) wet
tropical forests are an exception (Zuidema et al., 2012). Although possible, there are
some limitations and difficulties of working with tree-rings in such wet climates.
Not finding a common growth-signal (i.e., not being able to build chronologies)
implies that annuality has to be proven using (expensive) radiocarbon dating
analyses. Furthermore, the lack of a chronology also limits the options for quality
checking as ring measurements cannot be compared across samples, potentially
reducing accuracy. It is therefore essential to assess cycles of wood formation (see
section 4.2) in combination with (traditional) tree-ring analysis.

We reiterate the importance of working with discs instead of cores,
especially when studying wet forest species. Working with discs allows for a
higher accuracy in tree-ring identification and we argue that obtaining discs
directly at sawmills would greatly facilitate fieldwork. On the other hand,
working solely with discs also limits sample collection to trees above the MCS
and to (the small group of) commercial species. Increment cores can be used to
expand sampling to smaller trees or to species not being logged and successful
tropical tree-ring studies exists based (almost) solely on increment cores (e.g.,
Schoéngart et al., 2006) or on a combination of discs and cores (e.g., De Ridder et
al., 2013a; De Ridder et al., 2013b). Therefore, we recommend working with discs
as the basis to identify (problems in) ring-boundaries and using cores to expand
sample sizes and species.

Obtaining discs at the sawmills facilitates fieldwork, without reducing
the applicability of the measured tree-ring data. Many of the meta-data relevant
for tree-ring analysis and necessary to calculate future timber yields (e.g., tree
location, densities per hectare, dbh, bole height, etc.) can nowadays be obtained
from logging inventories. Although these data may be less accurate than actual
measurements in the field (e.g., tree locations are usually roughly estimated),
time gained probably outweighs possible losses in accuracy. Furthermore,
trees being logged are usually above MCD, thus representing a subset of
successful, surviving trees. Growth rates of these (successful) trees may be
more representative for the growth of trees to be logged in the future and thus
provide more accurate yield estimations (Rozendaal et al.,, 2010b). We also
recommend working with sample sizes >35-50 (large) trees per species, as done
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in this study, to obtain accurate growth rates and quantification of persistent
growth differences. Setting up national or regional (multi-country) tree-ring
laboratories should be encouraged, to measure growth rates for more species,
locally and in different forest areas per country or region.

Finally, from a forest management perspective in (Central) Africa, we
recommend focusing tree-ring analysis on the 15 most exploited tree species.
These species comprise ~92.5% of the total volume logged in tropical Africa
(Ruiz-Pérez et al., 2005) and most of these species (12 out of 15) produce tree-ring
boundaries (Richter & Dallwitz, 2000). Four of these species were included in
this study (C. schweinfurthii, E. utile, E. ivorense, and P. soyauxii). We also express
the importance of reporting and publishing both the successful studies (i.e.,
species with annual rings, chronologies and climate-growth correlations) and
the failures (i.e., no annual rings, no chronologies). Publications are probably
biased to the successes, whereas knowledge on which species do not form rings
is equally important.

There is a great potential to use tree-ring analysis, even in wet
tropical forests, to provide essential ecological data that can be used for forest
management. Tree-ring analysisobviously only provides growth ratesof surviving
trees. Combining growth rates from rings with survival and regeneration data
from PSP in the same forests would allow for realistic simulations of population
growth (cf. Couralet et al., 2005). This would be especially interesting when
combined with (long-term) monitoring studies on the effects of logging and
silvicultural treatments on the development of exploited forests (cf. Pefia-Claros
et al., 2008; Gourlet-Fleury et al., 2013). Such an analysis would allow for a more
accurate evaluation of the consequences of forest exploitation. We hope that this
study (and the supplemented fact sheets) may form the beginning of a better
information basis for sustainable forest management in (Central) Africa.
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Supplementary Materials Chapter 2

Appendix A - Radiocarbon dating

Supplementary Figure S2.1 *C fraction in wood of pre-dated rings (red crosses) and the corresponding
radiocarbon dates (green circles) for four species from a wet tropical forest in Cameroon. When pre-dated
rings and radiocarbon dates correspond, ring dating was correct. Discrepancies (indicated by arrows)
indicate measurement mistakes. Grey lines are the reconstructed northern hemisphere zone 3
radiocarbon values (NH_Zone3, cf. Hua & Barbetti 2013)
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Appendix B - Fact sheets
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Abstract

Worldwide, over 400 million hectares of tropical forests are set aside for timber
production. Several certification schemes exist to ensure more sustainable
exploitation (e.g., FSC, PEFC, OLB, etc.) and large areas of production forests
are currently certified. Under such schemes, logging companies are required
to evaluate whether species are not overexploited and, if necessary, adapt their
logging activities. However, the data needed to project exploitation intensities —
growth, mortality and regeneration rates of trees — are scarce. Tree-ring analysis
provides lifetime species-specific growth data that can be used to improve the
projections of how much timber will be available at the next logging cycles. In
this study, we integrated growth data from tree-rings with logging inventory
data to forecast timber yields in the next harvest round for four timber species
in Cameroon. We compared projections using tree-ring growth data with
projections using fixed growth rates, as set by law and applied in Cameroon.
Additionally, we assessed the effect of increasing logging cycle and of using filed-
based species-specific logging intensities on the next cycle’s yield projections.
Under current logging practices, future logging yields are projected to reduce
for all species to 21-36% of the volumes exploited at first harvest. Simulations
using fixed rates often resulted in lower yields with lower volume ingrowth
from trees that were below minimum cutting diameters in the first harvest.
Increasing the length of the logging cycle increased yield predictions but did not
result in yields being sustained over time (remaining between 26-48%). Using
species-specific logging intensities resulted in the largest increases in predicted
yields: with projected yields of up to 73% of the initial harvested. That overall
yields were low is worrisome for forest conservation, as loss of economic value
may lead to conversion of forests to other land uses. Thus, declining species-level
yields seems to be inevitable. Ultimately, finding a balance between economic
gain and the (ecological) sustainability of logging operations is crucial to ensure
that, on a forest level, exploitation is ecologically and economically sustainable
and that forests are not converted to other land-use.
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Timber yield projections for African wet tropical forest species

3.1 Introduction

Tropical forests harbour a rich biodiversity and hold almost half of the world’s
terrestrial biomass (Pan et al., 2011). Simultaneously, these forests are an
important source of timber and large tracts of tropical forest — 403 million
hectares — are being logged or have been assigned for logging in the near future
(Blaser et al., 2011). The area of forest destined for logging has increased mostly
in tropical Africa, with a tripling of the area as signed for logging between 2005
and 2010 (Blaser et al., 2011). Sustainably exploiting these forests is essential to
ensure a continued supply of timber with limited disturbance of their ecosystem
services and functions (e.g., biodiversity, carbon retention). Furthermore,
ensuring exploitation is sustainable is important as logged forests are often
classified as “degraded” and are therefore more susceptible to conversion to
other (non-forest) land uses (e.g., Giam et al., 2011).

In manytropical countries, forestrylegislations have been developed that
aim to ensure logging operations do not affect economic, societal and ecological
forest functions on the long term (Esteve, 2001). Often, national legislation
requires that management plans are developed prior to exploitation (Nasi et al.,
2006). Furthermore, several international certification schemes have been set up
to evaluate the sustainability of logging, guarantee socio-economic benefits and
safe-guard the future of forest areas. Currently, the area of logging concessions
with some form of certification (e.g., FSC, PEFC, OLB, etc.) accounts for only
8% of the world’s forests, with only a small worldwide increase in area between
2005 and 2010 (Blaser et al., 2011). On the other hand, the area of certified forests
in Africa has more than tripled in the same period, from 1.48 to 4.63 million
hectares (Blaser et al., 2011). Under such certification schemes, logging is usually
performed in polycyclic logging systems, in which the largest individuals in a
forest parcel are selectively logged and the parcel is allowed to regrow for several
years, i.e., for the length of the logging cycle. Logging cycle length may be either
fixed by national legislation (typically 20-40 years) or adjusted per forest type.
Additionally, only part of all potentially exploitable trees is allowed to be logged
(i.e., there is a maximum logging intensity) and a species specific minimum
diameter threshold to log trees (Minimum Cutting Diameter, MCD) is usually
fixed by law or by the certification body (Nasi et al., 2006). Logging companies
are then required to evaluate whether the combination of logging cycle length,
intensity, and MCD results in the sustainable exploitation of a species.
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In many countries in the Congo Basin in Central Africa, sustainability
of exploitation is assessed using stock recovery rate calculations (Picard et al.,
2009). Stock recovery rate is the tree stock available for harvest (i.e., above MCD)
after one logging cycle, compared to the stock harvested at the first logging
round (Durrieu de Madron et al., 1998). These calculations use the current
population structure and vital rates of a species (i.e., growth and mortality) to
forecast its population in the next harvest round. Regeneration is often not
included in these projections, which is unrealistic but an acceptable assumption
when using short-term projections (i.e., one logging cycle; Picard et al., 2009).
Ideally, the recovery rate should equal 100%. If necessary to attain sustainable
stocks, the MCD of a species is usually adjusted, as cycle length and maximum
logging intensity are often fixed by law (e.g., in Cameroon at 30 years and
80%, respectively). Alternatively, these projections can be performed including
estimates of logged volume, instead of solely working with number of trees.
Such timber yield projections provide an indication whether exploited volumes
can be sustained in the next harvest round (Brienen & Zuidema, 2006b) and thus
provide a more complete picture of timber exploitation. Despite their relevance,
such calculation only exist for a limited set of tropical tree species worldwide
(Putzetal., 2012) and are nearly absent for African species (De Ridder et al., 2013b).
This shortage of studies is worrisome, given the importance of sustainable
management for conserving forested areas and maintaining biodiversity of
tropical forests (Edwards et al., 2011; Putz et al., 2012).

Irrespective of the methods used, it is evident that calculations of the
sustainability of timber exploitation depend strongly on the logging cycle length,
logging intensities and MCDs. However, the basis for calculating timber yields
is ultimately the ecological information on the vital rates for each exploited
species (e.g., growth rates, regeneration and survival). This basic ecological
information is commonly obtained from monitoring trees in Permanent Sample
Plots (PSPs). Plot data is, however, often limited when used to estimate growth
rates and tree ages for single species, especially for canopy and commercial tree
species (Picard et al., 2010). Given that commercial species usually occur in low
densities per hectare (Poorter et al., 1996; Hall et al., 2003) and that plot studies
sample a small area (typically one hectare) and over short monitoring periods
(typically a few years to a few decades), only little vital rate data is being collected
for commercially exploited species. For these species accurate long-term data on
survival, ages and growth is thus still lacking.
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Timber yield projections for African wet tropical forest species

Tree-ring analysis can be used to obtain long-term data on the ages and
growth rates of trees. It offers a reliable and relatively fast tool to assess tree
ages (at logging) and to measure growth rates throughout the entire life-span
of trees. These data can be used to improve calculations of future timber yields
(Brienen & Zuidema, 2006b; Schéngart, 2008). Additionally, tree-ring growth
data and ages provide an information basis for management decisions such
as determining the size range of trees that may attain harvestable sizes in one
logging round (i.e., future crop trees) and that need to be protected or tended.
In the last decades, tree-ring analysis on tropical tree species has increasingly
been applied (Worbes, 2002; Zuidema et al., 2012) and growth data derived
from tree rings has been used in assessments of exploitation sustainability for
several species in South-America (Brienen & Zuidema, 2006b; Schongart, 2008).
Despite the long-known potential for tree-ring analysis in Africa (Mariaux, 1967)
such calculations exist for only one African species (i.e., Terminalia superba; De
Ridder et al., 2013b). Given the strong increase in demand for timber from Africa
and the increase in certified African forests (Blaser et al., 2011), it is eminent that
such calculations are needed for many more species.

Another advantage of tree-ring derived growth data is that it inherently
contains persistent growth-differences between individuals (i.e., fast growing
trees remain fast growing and vice-versa). These growth differences among
trees within a species lead to large variation in the time needed to reach
harvestable sizes and thus in the tree ages at harvest size. Persistently fast-
growing individuals have been shown to strongly drive population dynamics
(Bullock et al., 2004) and thereby disproportionally contribute to future timber
yields (Brienen & Zuidema, 2007; Rozendaal et al., 2010b). This has large
consequences for the forecasting of future population structures and thus on
the estimates of future timber yields. Including persistent growth-differences
in timber yield predictions provides more realistic estimates of future yields
compared to calculations using fixed growth rates (Brienen & Zuidema, 2007),
thus improving the assessment of logging sustainability.

In this study we used tree-ring data for four Cameroonian timber
species to project future timber yields for these species. For each of these species
we predicted future yields under different logging scenarios, using their size
distribution in the field combined with growth data. The scenarios were based on
current Cameroonian national logging legislation, but varied in the growth data
being used (legally fixed or tree-ring based), the length of the cutting cycles (the
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current 30 year cycle used in Cameroon and cycles of 40 and 60 years), and in the
logging intensities (maximum allowed or field-based intensities). We assessed
the following research questions: (1) what proportion of timber extracted at
first harvest will be available in the next standard harvest round for four timber
species in Cameroon? (2) do these proportions change when using legally fixed
or tree-ring based growth rates? (3) how do these proportions change for the
different species when increasing logging-cycle lengths to 40 and 60 years? (4)
what is the effect of changing the logging intensities on future timber yields?

We collected life-time growth data for four timber species in Cameroon
using tree-ring analysis. We then used legally fixed by Cameroonian legislation
(MINEF, 2001) and tree-ring based growth data to project future timber yields
under different logging scenarios. First we assessed yields using the standard
logging cycle length of 30 years, and the maximum logging intensity. Next,
we projected yields under longer logging cycles of 40 and 60 years. Finally, we
assessed how yield projections change when using the actual intensities at which
each of the species was logged in the field. Finally, we used the tree-ring data to
determine the range of diameters of future crop trees and to assess the amount
of years trees have grown between reaching MCD and being logged. This age
gives an indication of how long wood volume has ‘accumulated’ after trees have
passed MCD. If this age is similar or lower than the logging cycle, this suggests
yields may be sustained in the next logging cycles.

3.2 Methods

Study area

Samples were collected inside the adjacent 2011 and 2012 cutting blocks of
the FSC-certified (Forest Stewardship Council) logging concession 11.001,
of Transformation REEF Cameroon (TRC, 2008). This concession lies in the
Southwest Region of Cameroon, adjacent to Korup National Park (Figure 3.1),
at approximately 5°23'N, 9°10’E. Although a large area in the North-west of the
concession was previously exploited in the 1980s, our sampling area consisted of
primary forest without signs of major disturbances or previous exploitation. The
vegetation consists of semi-deciduous Guineo-Congolian lowland rainforest
(~200m a.s.l; cf. White, 1983) dominated by Leguminosae-Caesalpinioideae
tree species, with a canopy height of ca. 40 m (and emergent trees up to 53m).
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Timber yield projections for African wet tropical forest species

Regional climate is equatorial, with an unimodal rainfall distribution and a dry
season from December to February (monthly rainfall <toomm). Total annual
precipitation averages ~4000 mm (Nchanji & Plumptre, 2001) and mean annual
temperature averages 26.7°C (range: 25.7-29°C). See the climatic diagram (Mamfé
weather station; cf. Walter & Lieth, 1960) in Figure 3.1.

Study species, sample collection and ring measurements
In the period of June 2010 to May 2012 we collected samples of four timber
species known to produce annual growth rings (Groenendijk et al., 2014) and that
were being commercially exploited (Table 3.1). These species vary in their use,
commercial value and abundances in the forest. For two species, we collected
~100 individuals: Brachystegia eurycoma Harms, and Daniellia ogea (Harms)
Rolfe ex Holl. For Terminalia ivorensis A.Chev. we collected 63 samples and for
Entandrophragma utile (Dawe & Sprague) Sprague 10 individuals (Table 3.1). These
later two species were not abundant in the area, but have high commercial value
(Lemmens ef al., 2012). Each sampled tree was georeferenced (Garmin GPS60X)
and its diameter at breast height (dbh) was measured.

We collected most samples (~90%) in previously unlogged parts of
the FMU (TRC, 2008) not showing apparent signs of past disturbances (e.g.,
from logging, agriculture, fire). For trees that were logged, we collected
cross-sectional discs (ca. 30% of the samples), as working with discs allows
identifying the presence of wedging (rings that merge on certain parts of
the circumference of the tree) or discontinuous rings (intra-annual growth
variations). For trees not being logged and for smaller trees (below MCD) we
collected cores (in three to four directions) using 5.15mm increment borers
(Suunto and Haglof). Samples were usually taken at 1m height or above
anomalies or buttresses and we sampled all trees >5 ¢cm dbh. All samples
were air dried and surfaces prepared to allow for growth-ring identification
by polishing them (with increasingly finer sandpaper; grain 40 to 1000) or
using a large sliding microtome (Gartner & Nievergelt, 2010). Ring boundaries
were assessed and marked by naked eye or under a stereo microscope
(magnification 16-40x) and ring-widths measured on scanned images (using
an Epson Expression 10000XL flatbed scanner) at a resolution of 1600-2400
dpi. Samples were often wetted and/or scanned laying on a film of water
on the scanner plate to increase ring visibility. Ring widths were measured
using the software WinDendro Regular (Regent Soft, Canada) in three to four
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radii per tree (for more details of the ring measurements see Groenendijk et
al. (2014). Growth rates were averaged for all radii and converted to diameter
growth rates.

Figure 3.1 (A) Location of study site: Forest Management Unit 11.001 (light grey) and the sampling area
(black). Inlay shows the location of the study site in Cameroon. Roads, national borders and national
parks are also shown. (B) Climate diagram (cf. Walter & Lieth, 1960; period 1968—2009) for the Mamfé
Airport weather station, indicating the rainy (>100 mm month-1; black area) and dry seasons
(rainfall<temperature, dotted area).

The quality and accuracy of the tree-ring measurements were assessed
by crossdating. Crossdating consists of matching patterns of variation in ring-
widths between different ring-width series and can be performed within trees
(i.e. among different radii) and between different trees. Within-tree crossdating
helps identifying wedging and ‘false’ rings and ensures the same (amount
of) rings are measured between different radii. Internal crossdating proved
successful for most samples (i.e. good visual and statistical match). Crossdating
among trees proved challenging for all species, and building species chronologies
was impossible (Groenendijk et al. 2014). Radiocarbon dating confirmed annual
nature of ring formation for the three species: B. eurycoma, D. ogea and E. utile
(Groenendijk ef al., 2014). For T. ivorensis (and for E. utile) the annual nature of
ring formation had been previously demonstrated by Détienne et al. (1998) in
Cameroon. Note that tree ages used here are slightly underestimated as we do
not include a correction for the time trees require to growth to sample height
(about 1 m above the ground).
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Projecting population structures

To predict future timber yields we first used growth and mortality rates of trees
to project the population structure of a species after one logging cycle (e.g., after
30 years) and then calculated future timber volumes based on the future size
distributions. For this purpose, we first determined current population structures
for our species. Next, we predicted the development of these populations over
time using two types of growth data: fixed growth data per species, as set by the
Cameroonian administration (MINEF, 2001), and tree-ring based growth data.
We then used the projected amount and sizes of trees to calculate future timber
volumes. We performed these projections under different scenarios, to simulate
the effect of changing the length of the cutting cycle and the intensity of logging
on future timber yields.

Population structures, i.e., the number of individuals per diameter
class, were derived from the logging company and from our own measurements
in 16 circular plots of ~1 ha (see Groenendijk et al., 2014). The primary sources for
diameter distributions of trees >20 cm were two inventories carried out by the
logging company: one systematic inventory of all trees >SMCD in the two annual
cutting blocks, and another stratified throughout the entire logging concession
(for trees >20 cm) using 946 plots of ~0.5 hectare (TRC, 2008). In both inventories,
the diameter of trees was estimated by inventory crews within 10-cm diameter
windows. We corroborated these distributions, and completed them for trees
smaller than 20 cm, using the size distributions measured in our sampling plots
(Groenendijk et al., 2014). For the projections of future diameter distributions we
generated a ‘current population’ of 500 individuals according to the species’ size
distributions in the field, and every individuals was assigned a random diameter
within the size class (e.g., between 20.0 and 29.9 cm for trees in class 20 cm). We
performed the yield calculations based on a fixed amount of individuals and not
on a fixed area (cf. Rozendaal et al., 2010b), to account for the large differences in
abundances of trees per hectare among species (Figure 3.2 and Table 3.2).
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Timber yield projections for African wet tropical forest species

Fixed and tree-ring based growth rates

To assess the effect of using different types of growth data on projected timber
yields, we used fixed and tree-ring based data to forecast future population
structures. The fixed data were based on growth rates set by Cameroonian law
(MINEF, 2001) to be used for timber yield predictions. These growth rates are
fixed — irrespective of tree size — at 0.5 cm yr for B. eurycoma and E. utile and
at 0.7 cm yr* for D. ogea and T. ivorensis. The tree-ring based data were obtain
through tree-ring analysis for our species (Groenendijk ef al., 2014). The amount
of trees measured varied among species (Table 3.1) and was rather low for E.
utile, with only ten trees measured. To ensure a similar amount of growth data
for all species and to increase the number of growth trajectories, we performed
bootstrap simulations using the tree-ring data and generated 1000 growth
trajectories for each species, following the approach by Brienen and Zuidema
(2006b). These growth trajectories reflect the age/size variation in growth and we
explicitly incorporated variation in growth among individual trees (i.e., growth
autocorrelation) in these simulations. Incorporating this growth variation in the
simulated trajectories leads to realistic growth variation in the simulated data
and to reliable estimates of timber yield recuperation (Brienen & Zuidema, 2007;
Rozendaal et al., 2010b). We incorporated growth autocorrelation by randomly
choosing a growth rate for the current year from trees that were in the same
‘growth rate class’ in the previous year (i.e., using a 1-year time interval) from
a diameter window of 10 ¢cm around (5 cm above and below) the current tree
diameter.

Next, we projected the sizes of trees after one logging round by
assigning one of the bootstrapped growth trajectories to each of the 500 trees
in our ‘current population’. For the final population structure, we applied an
annual mortality chance of 1% randomly on all trees, e.g., the fraction of trees
that survived in the 30-year logging cycle scenario was (0.99)*. This mortality
chance also fixed by the Cameroonian administration (MINEF, 2001) and in
range with rates found in the adjacent Korup National Park (Figure 3.1) for trees
>50 ¢cm dbh: between 0.0 and 6.3% yr (average 1.4%, n = 1651; Newbery et al.,
2013). Mortality of juvenile trees is usually higher than that of adult trees, but
may be in the same range (e.g., 1.1% per year; Newbery et al., 2013), but we do not
account for this difference in our simulations. For a schematic overview of the
population projections, se figure 3.2.
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Figure 3.2 Schematic overview of the population structure projections under a logging cycle of 30 years.
Grey bars show the ‘current’ population density per size classes and black bars the projected population
structure after 30 years, using a growth rate of 0.75 cm yr? and a 1% mortality rate. All trees above
Minimum cutting diameter (MCD, dashed line) of 80 ¢m are considered exploitable. Timber stock
recovery is 45%: stock at second harvest (45 trees) divided by the first harvest of 100 trees.

Calculations of timber volume

Based on the current and projected population structures, we calculated the
available volume of timber >MCD for each species. To calculate stem volumes
we established the relationship between dbh and the volume for trees logged in
the 2011 cutting block using third-degree polynomial functions. We calculated
species specific relationships for the two species most logged in the cutting
block: B. eurycoma (n = 933 trees) and T. ivorensis (n = 52 trees). For the two other
species — E. utile (n = 6) and D. ogea (n = 35) — the amount of trees logged was
deemed too low to calculate strong relationships and the average relationship
between dbh and volume for all trees logged that year was used (n =3186). These
volumes represent bole volumes in the forest (i.e., round wood) and incorporate
the dbh-stem height relationship and the taper of the stem. These calculations,
however, do not account for the amount of sapwood in a stem (sapwood is usually
discarded) nor for losses during the transformation of boles at the sawmill (i.e.,
sawn wood volume). We do not account for the sapwood and transformation
factors, as we assume that the relative changes in round wood yields will be
reflected on changes in sawn-wood yields.
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Logging scenarios

We created different scenarios to assess the effect of data type, logging cycle
length and logging intensity on timber volume recuperation. To simulate the
current logging conditions in Cameroon, our ‘standard’ scenario had a cycle
length of 30 years and we applied the maximum allowed logging intensity of 80%.
We use this standard scenario as a basis to assess the effect of using fixed and
tree-ring based growth rates. To assess how future timber volumes change under
longer logging cycles we simulated two scenarios with longer cycle lengths of 40
and 60 years, using the maximum logging intensity. Finally, to assess the effect
of changing logging intensities on future yields, we applied a standard 30-year
cycle but used species-specific logging intensities based on field measurements.
For the simulations using longer logging cycles and species-specific logging
intensities we used the tree-ring data only, as these data provide accurate and
realistic growth rates.

To determine the species specific logging intensities, we determined the
intensities for each species based on the inventory of the logging company and on
the data on which trees were logged. Depending on factors such as commercial
demand for a timber species, stem quality, etc. the actual intensities of logging
may vary between species or between years. We calculated these species specific
intensities based on the amount of trees inventoried and logged in the 2012
cutting block. Inventory usually takes place in the year prior to exploitation and,
during inventory, all trees above MCD are tagged, their diameter is estimated
and each tree is classified as exploitable or non-exploitable. A tree is classified as
non-exploitable when logging it is not viable, e.g., trees with rotting or strongly
crooked stems, trees growing on steep slopes, or growing 25 m from rivers.
Additionally, not all of the trees considered exploitable are harvested during
logging operations: certain species have varying commercial demands over
time, larger trees are preferentially logged (TRC unpublished data; Van Rheenen,
2005), and trees may be sparred if heavily covered by lianas (for safety reasons)
or if rotting is noted prior to logging (that was not recorded during inventory).
Any tree that is cut down is considered exploited, including trees discarded for
having rotten stems (noted after logging) and trees used for bridges. It is thus
possible to calculate intensities relative to the total amount of trees inventoried
or to the total amount of trees considered exploitable. We calculated the species
specific logging intensities as the proportion of exploitable trees that are actually
exploited, assuming that trees considered non-exploitable in the inventory, will
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fall in the same category for the following logging cycles, as these trees will still
be crooked, rotten or growing near a river. Thus, the intensities we use, although
higher than if calculated using all trees, provide a much more realistic estimate
of the proportion of exploited over exploitable trees in the forest.

Timber yield calculations

For each of logging scenarios we simulated an initial logging round on the
‘population’ of so00 individuals by randomly choosing trees from >MCD
according to the logging intensities applied. For instance, in the scenarios with
the maximum logging intensity of 80%, 20% of trees >MCD were not exploited.
We then simulated a second logging round incorporating the growth of all trees
remaining after the first round: those below MCD and the trees above MCD
remaining after the first round. Next, we calculated future timber yields by
dividing the exploitable volumes projected in the second logging rounds with the
volumes exploited in the first round. As timber yields were calculated for virtual
populations, our results provide estimates of second harvest volumes relative to
the first round’s volume (see Table 3.2). We also calculated what proportion of
the volume at second harvest was determined by the ingrowth of trees <MCD
(i.e., the ‘commercial ingrowth’) or by the trees that remained from the first
harvest (i.e., those that were not logged). For each scenario, we repeated these
calculations 10 times (i.e., for 10 ‘populations’ of 500 trees), to calculate average
projected timber yields and avoid that results were affected by the (random)
choice of trees to be logged.

Future crop trees and accumulated growth years

Finally, we used the growth data from tree-rings to determine the size range
of future crop trees and to assess the amount of years trees have grown after
reaching MCD. The size range of future crop trees can be used as an information
basis for forest managers to determining the size ranges of trees that need to
be protected or tended during current logging activities. These trees may attain
harvestable sizes in one logging round (here 30 years) and it is thus important
to conserve them. We determined this diameter range by calculating the size
of trees 30 years before reaching MCD, based on the tree-ring data. We also
calculated how many years trees have grown between reaching MCD and being
logged, as an indication of how long wood volume has ‘accumulated’ after trees
have passed MCD. If this age is much larger than the logging cycle, this suggests
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yields may not be sustained in the next logging cycles. These ages were again
calculated using the tree-ring data, simply as the difference between the total
age of a tree when logged, and its age when reaching MCD.

3.3 Results

Stem densities over the diameter classes

Stem densities varied strongly among species. For instance in the 2011 cutting
block, Brachystegia eurycoma showed ~235 more trees above MCD than and
Entandrophragma utile (Table 3.2). Population structures also varied between
species: B. eurycoma was the only species showing regeneration (i.e. with
individuals in the smaller diameter categories), while the other three species
showed hump-shaped diameter distributions (Figure 3.2). Additionally, the
population structure of E. utile lacked individuals in the diameter classes of 60
and 70 cm, just below MCD.

Figure 3.3 Density of trees per 10-cm diameter classes for four Cameroonian timber species. Densities of
trees were obtained from forest inventories in two annual cutting blocks (~3260 ha) for above their
minimum cutting diameters (MCD, dotted vertical lines); in 946 inventory plots of ~0.5 ha across the
logging concession for trees >20cm diameter; and using 16 plots of ~ 1 ha for smaller diameters.

83



Chapter 3

Growth rates and ages at logging

Growth rates and ages to reach minimum cutting diameters (MCD) varied
within and among species. Average growth rates ranged between 0.43 cm yr?*
for Daniellia ogea and 0.96 cm yr? for Terminalia ivorensis (Table 3.1). Lifetime
growth patterns also varied among species. T. ivorensis trees show a growth
pattern typical for light-demanding species, with high growth rates (>1 cm yr?)
in the juvenile phase but that decrease with age (Figure 3.3). B. eurycoma, E. utile,
and D. ogea presented growth patterns characteristic of more shade-tolerant
species, with growth that is slow for juveniles but increased at intermediate
diameters (Figure 3.3). Growth rates also varied across trees within species,
inducing large variation in tree ages to reach MCD (Figure 3.4). For instance, for
T. ivorensis ages of trees to reach MCD varied more than fourfold: from 21 to 91
years (average of 45 years). For D. ogea, the slowest growing species, the average
tree age to reach MCD was 148 years, ranging from 77 to 214 years (Table 3.1).
Growth rates measured from tree-rings also differed from the fixed rates used
by the Cameroonian administration to calculate timber yields. For B. eurycoma
and E. utile measured growth rates were higher than the fixed rate of 0.5 cm
yr? (grey lines, Figure 3.3), while D. ogea growth rates were consistently below
the fixed rate of 0.7 cm yr? (black lines, Figure 3.3). For T. ivorensis, measured
growth was above the set rate for trees < 80 cm dbh and fluctuated around it
for larger trees (black lines, Figure 3.3). Simulated growth trajectories showed
similar average growth rates and variation as the tree-ring data. However, for
B. eurycoma simulated growth showed less variation than the original tree-ring
data, i.e., the spread in measured data (grey lines) was somewhat higher than for
the simulated data (red lines; Figure 3.4).
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Figure 3.4 Diameter growth rates calculated from tree-ring measurements for four timber species in
Cameroon. Dotted lines indicate the fixed growth rates used for yield simulations in Cameroon: 0.5 cm
yr for B. eurycoma and E. utile; and 0.7 cm yr” for D. ogea and T. ivorensis.

Figure 3.5 Measured and simulated tree-growth trajectories. Grey lines: growth trajectories measured
with tree-ring analyses; black lines: mean growth trajectory from tree-rings; continuous red lines: mean
of simulated trajectories; dashed red lines and pink areas: the 95% confidence interval of simulated
trajectories; and yellow shading: highest and lowest simulated diameters per age. Horizontal dotted lines
indicate minimum cutting diameters (80 cm for E. utile and 60 cm for the other species) and blue lines the
fixed growth rates used for yield simulations as set by the Cameroonian administration.
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Timber yield projections

We combined diameter distributions with growth data to project future timber
yields for four species in Cameroon under different scenarios: using different
input growth data, logging cycle length, and logging intensities. First, we
assessed the effect of using simulated growth data versus fixed growth rates on
future yields. Under the standard logging scenario — with a cycle of 30 years and
maximum logging intensity of 80% — yields at second harvest were rather low
irrespective of using fixed or tree-ring based growth data (Figure 3.6). For all
species, projected yields in the second harvest round were between 21% and 36%
of the volumes at first harvest (Figure 3.6). Commercial ingrowth (i.e., volume
ingrowth from trees <MCD at the first harvest that grew above MCD in the
second) was quite low and the largest proportion of the future yields originated
from the 20% of trees not logged in first harvest (black bars; Figure 3.5). For E.
utile, projections using fixed growth rates did not show any new ingrowth, i.e.,
none of the trees below MCD attained exploitable diameters within the 30-year
logging cycle. For D. ogea, total yield projections were higher when using fixed
growth rates but commercial ingrowth was nearly identical to the projections
using tree-ring data.

Second, we assessed the effect of increasing the logging cycle length
on future yields by predicting future yields under varying cycle length of 30,
40 and 60 years. These predictions were performed using the tree-ring based
growth data and a logging intensity of 80%. Increasing logging cycle length
usually resulted in increased timber yields. However, these increases were not
very strong and yields remained under 48% for all species, even for the longest
cycle of 60 years (Figure 3.6). Under longer cycles, the share of the future yields
originating from the commercial ingrowth changed, becoming larger with
increasing cycle length (grey bars, Figure 3.6). The share arising from trees not
logged in the first round varied per species (black bars, Figure 3.6): it remained
rather stable for E. utile, irrespective of cycle length, it decreased for B. eurycoma,
and for D. ogea and T. ivorensis remained rather constant.

Finally, we assessed future timber yields using species-specific logging
intensities measured in the field. We calculated and applied the following
species-specific intensities: 54% for B. eurycoma; 38% for D. ogea; 86% for E. utile;
and 46% for T. ivorensis. These percentages are calculated relative to the amount
of exploitable trees in the forest and thus not to the total amount of trees
inventoried. Using the field-based intensities and the standard logging cycle of
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30 years, timber yields predictions increased remarkably for B. eurycoma, D. ogea
and T. ivorensis, increasing from 24%-36% to 52-73% (Figure 3.6). On the other
hand, yield decreased slightly for E. utile, from 25% to 21%, as the intensity of
logging increased from 80% to 86%. Commercial ingrowth was similarly low for
both intensity scenarios: on average ~7.5% of the volume logged at first harvest
(grey bars, Figure 3.6). The increase in yields were thus solely resulted from a
larger amount of trees that remained after first harvest. The share of future
yields from remaining trees increased from on average 20% of the volume logged
at first harvest to 45% (black bars, Figure 3.6).

Figure 3.6 Predicted timber yields for four commercial tree species from Southwest Cameroon. Results
presented for five different logging scenarios: two scenarios under the standard logging cycle of 30 years
and maximum allowed logging intensities of 80% used in Cameroon, but using fixed growth rates (Cycle
30 Fixed) or rates measured from tree-rings (Cycle 30 Rings); two scenarios applying longer logging cycle
lengths of 40 and 60 years (using tree-ring data and 80% logging intensity); and one scenario with a
standard cycle length and species-specific logging intensities based on intensities observed in the field
(Cycle 30 Intensities). Species logging intensities: B. eurycoma = 54%; D. ogea = 38%; E. utile = 86%; and T.
ivorensis = 46%. Grey bars represent new volume ingrowth from trees below minimum cutting diameter
(MCD) in the first harvest; and black bars the ingrowth from trees not cut at initial harvest (i.e., the
remaining trees).
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Using the tree-ring data, we also assessed the diameter range of future
crop trees under the standard 30-year logging cycle and measured the amount of
years trees have grown between reaching MCD and being logged. The diameter
range from which individuals have the potential to reach MCD differed strongly
between species: for E. utile future crop trees range from ~40 to 80 cm in
diameter whereas for T. ivorensis, this range was from o to 60 cm, indicating that
T. ivorensis trees that establish at the first logging cycle may be logged during the
following cycle. The amount of years trees have grown between passing MCD
and being logged also varied between the species: for B. eurycoma on average ~30
years, while for E. utile on average ~75 years (with a maximum of >175 years).

Figure 3.7 (A) Diameter range of future crop trees for four timber species from Southwest Cameroon,
based on tree-ring analysis. Shown are the ranges and average (dot) diameters of trees 30 years before
reaching the Minimum Cutting Diameter (MCD), dashed lines indicate MCDs (80 cm for E. utile and 60
cm for other species) (B) Amount of years trees have grown between reaching MCD and being logged,
dashed line indicate the standard 30-year logging cycle length used in Cameroon.
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3.4 Discussion

In this study we used tree-ring data for four Cameroonian timber species
to project timber yield development in the next harvest round in a polycyclic
logging system. Predictions using standard logging scenarios resulted in
low volume recuperation (of 21-36% of the volumes at first harvest), both for
simulations using fixed and tree-ring based growth rates. Simulation using
fixed rates often resulted in lower yields with lower volume ingrowth from trees
that were below minimum cutting diameters in the first harvest. Additionally,
increasing the length of the logging cycle increased yield predictions but did
not result in yields being sustained over time (remaining between 26-48%) .
Changing logging intensities — to intensities registered in the field — resulted
in the largest increases in predicted yields: with yields of up to 73% of the initial
harvest volume projected for the next harvest round.

Growth simulations and robustness of yield predictions
The simulated growth trajectories used in this study to estimate future timber yield
showed average growth rates that resembled the tree-ring based growth rates.
However, for Brachystegia eurycoma the simulated age to reach minimum cutting
diameters (MCD) was slightly higher than the measured age and the variation
in growth rates was also lower. For this species, the projected yields may thus be
somewhat conservative, due to the slightly lower growth rates in the simulations
compared to actual growth rates but also due to the lower growth variation. This
variation is known to increase future yield projections (Brienen & Zuidema, 2007).
We used logging intensities based on field data of trees inventoried
and actually exploited. However, these field data did not allow to assess what
proportion of trees considered exploitable was not logged for commercial
reasons (e.g., for being relatively small or because of no demand for a species’
timber) or for being rotten or malformed. The amount of trees marked for
exploitation but that are eventually considered not-exploitable can be quite
significant: in the Amazon 28% of trees (Holmes et al., 2002). As our data did not
allow for these quantifications, we included only those trees that were considered
as not-exploitable during the inventory. Our timber yield predictions may thus
overestimate the actual yields in the future. It is also important to note that the
field-based logging intensities used in this study correspond to the intensities
in a specific year (of 2012). These intensities may, however, vary depending on
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several factors such as (species specific) commercial timber demand, species
availability in the forest, etc. More accurate inventories of species specific
proportions of exploitable trees and logging intensities, covering several years
and large areas (i.e., different logging concessions) would greatly increase the
accuracy of yield predictions.

For the species E. utile, its low abundances in the forest means that
diameter distributions of this species need to be interpreted with care. For rare
species, diameter distributions are very sensitive for the presence/absence of
single trees in the sampling plots and extrapolating distributions to large areas
thus need to be done with care. Additionally, due to the low abundance we
only sampled 10 trees. Timber yield projections for this species thus need to be
interpreted with care, as they are based on a small number of trees. Nonetheless,
due to the commercial valued of E. utile (and of the genus) and its presence
throughout African tropical forests, we deemed it relevant to also calculate
yields for this species. Contrastingly, B. eurycoma occurred at very high densities
in the 2012-2013 cutting blocks. This species was, however, nearly absent in
other parts of the logging concession (P. Groenendijk, personal observations),
probably growing gregariously in a similar way as its close Central-African
congener Brachystegia laurentii (Germain & Evrard, 1956). Our predictions may
also underestimate future yields as we do not account for the increase in growth
rates that is often reported to occur after logging caused by the opening of
the canopy (Pefia-Claros et al., 2008; Gourlet-Fleury ef al., 2013). Additionally,
disturbances caused by logging could induce a regeneration wave for light-
demanding species, such as Terminalia ivorensis, that have the potential to reach
MCD within one logging cycle and thus boost timber yields.

In spite of these limitations, we believe that the yield predictions in
this study are still accurate, as they were based on growth data from tree-rings,
which provide accurate lifetime growth data of trees and incorporate within-
species growth variation. As well as being based on realistic growth data, our
predictions also better reflect the actual situation in the field by incorporating
realistic and species-specific logging intensities instead of a general maximum
allowed intensity for all species.

Fixed versus tree-ring based growth rates

We compared the effect of simulating logging yields using two types of data:
legally fixed and tree-ring based growth rates. The fixed rates used for yield
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simulations in Cameroon differed from averaged of measured growth rates
of all species but B. eurycoma. These differences were strongest for T. ivorensis
and Daniellia ogea. Individuals of T. ivorensis showed growth rates consistently
higher that the fixed rates (Figure 3.3), especially in for trees < 80 cm dbh (Figure
3.3). On the other hand, D. ogea trees grow consistently slower than the fixed
rates (Figure 3.3). Using rates that differ from the actual growth of a species,
may potentially lead to incorrect decisions on the logging intensity or cutting
cycle lengths. Furthermore, knowledge on growth rates and its variation, and
the lifetime growth pattern of a species can provide crucial guidelines for
managers, such as, size-ranges of trees to be protected during logging and
whether liberation of these future crop trees (e.g., by girdling competing non-
commercial trees) may be a valuable silvicultural intervention (De Ridder et al.,
2013b). Our results show that the size range of future crop trees varies strongly
between species: T. ivorensis individuals that recruit at first logging may already
reach harvestable sizes within one cutting cycle, whereas for the other species
these trees ‘originated’ from ranges starting at ~10-40 cm. Focussing on the
protection on relevant future crop trees can thus be used to more efficiently
apply such measures in the field and may help to increase future yields.

Ages to reach minimum logging diameter

Average ages for trees to reach MCD varied strongly among species: from 45 years
for T. ivorensis to 148 years for E. utile. These ages already provide an indication
of the yield recuperation potential of a tree species: if ages at MCD far exceed
the logging cycle length, volume regrowth may not be sufficient to replenish
timber stocks. For T. ivorensis, trees reached MCD on average in ~45 years, with
the fastest-growing individual reaching it in 21 years. Such relatively low ages
to reach MCD, and the corresponding fast growth rates, have also been found
for other African light-demanding timber species: ~75 years to reach 8o cm for
Triplochiton scleroxylon (1.1 cm yr; Detienne et al. 1998), 60 years to reach 60 cm
dbh for the congener Terminalia superba (De Ridder et al., 2013b). Similar ages
have also been found for several species growing in white-water floodplains in
the Amazon: between 17 and 82 years to reach 50 cm (low wood density species;
Schongart (2008). These low ages to reach MCD for the fast growing T. ivorensis,
suggest that timber yields may be sustained in the future (Schongart, 2008),
assuming that recruitment of young individuals is ensured. Sustained yields
were also suggested for the fast-growing congener Terminalia superba, from
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forests in Ivory Coast and the Democratic Republic of the Congo (De Ridder
et al., 2013b). Ultimately, this may lead exploitation to shift to fast growing
species in the long run (Valle et al., 2007), as the stock of slow-growing species is
exhausted. Such shifts in species may have important financial consequences, as
fast-growing species tend to have lower wood densities and lower market value
(e.g., Schongart, 2008).

For the other three species — B. eurycoma, D. ogea and E. utile — ages to
reach MCD exceeded the cycle length by a factor of three to five (ages of ~100-150
years, Table 3.1), suggesting low yield recuperation for these species. For the two
Caesalpinioideae, growth rates and ages at MCD, measured from tree-rings, do
not exist in wet African forests and are even sparse for other Caesalpinioideae:
in the adjacent Korup National Park (Figure 3.1), diameter growth rates of 0.48-
0.50 cm yr* were reported for Microberlinia bisulcata (Newbery et al., 2013); in
Southwest Cameroon, under a rainfall of ~1600 mm yr?, average growth rates
of 0.53 cm yr* were found for Erytrophleum ivorense (Nzogang, 2009), with ages
to reach the 50 cm MCD between 61-128 years; in the Democratic Republic of
Congo, with ~1200 mm yr* annual rainfall, diameter growth rates of 0.46 cm
yr* have been reported for Prioria balsamifera (Couralet, 2010), but all trees were
below 60 cm. The ages to reach MCD of E. utile compare to the ages of 126-172
found for three Entandrophragma species (including E. utile) in Southwest
Cameroon with rainfall ~1600 mm yr* (Nzogang, 2009). These ages are, however,
lower than the ages of ~250 years reported for Entandrophragma cyllindricum
from Central African Republic (Détienne et al., 1998). These high ages suggest
that under current logging cycle lengths, timber recuperation for these slow-
growing species will be low.

Timber yield projections

We simulated timber yields at the next harvest round varying three aspects:
the input data (using fixed growth rates or simulated rates with variation),
the logging cycle lengths (cycles of 30, 40 and 60 years), and the variations in
intensity of logging (maximum allowed or actual species-specific intensities.
The simulations using legally fixed growth rates usually showed lower yield
predictions than the simulations using bootstrapped growth trajectories based
on tree-ring data (Figure 3.5). Only for D. ogea did using legally fixed growth
rates give higher predictions of future timber yields. These higher predictions
arise from the fact that fixed rates for D. ogea were also consistently higher than
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the actual measured rates for all size classes (Figure 3.3). The most striking
difference between the simulations with fixed versus simulated growth rates is
the consistently higher commercial ingrowth (volume growth from trees <MCD)
when using the simulated growth data (i.e., ‘new ingrowth’ grey bars; Figure 3.5).
These results illustrate the importance of incorporating persistent differences
in growth between individuals in yield predictions (Brienen & Zuidema, 2007;
Rozendaal et al., 2010b) as fast-growing trees contribute disproportionally to
timber ingrowth in future cycles (Brienen & Zuidema, 2007).

Increasing logging cycle lengths resulted in increased future yield
projections, but did not result in sustained yields. Commercial ingrowth
increased under longer logging cycles as trees below MCD had more time
to grow to harvestable sizes. Except for E. utile, these longer cycles reduced
the contributions of the trees remaining after logging, probably due to the
accumulated mortality over time. For E. utile, the share of future timber
volume from the remaining trees increased over time, probably due to the size
distribution of E. utile (Figure 3.2), which showed relatively high amounts of
individuals in the size classes 80 and 110 cm. Volume growth for these large trees
is fast, due to the third degree relationship between stem diameter and volume,
and under longer logging cycles, these trees thus had more time to accumulate
stem volume. At longer logging cycles, the role of mortality and regeneration
become more important and our predictions do not incorporate these aspects
well: mortality is fixed for all species and sizes and regeneration is not accounted
for. This limits our simulations for longer logging cycles, especially for T.
ivorensis, as recruiting individuals of this species have the potential to reach
harvestable sizes within one logging cycle. Not accounting for regeneration
caused an increasingly underestimation of future yields with increasing logging
cycle lengths.

The most striking changes in yields from changing logging intensities.
Our results suggest that up to 73% of the initial volume logged can be recuperated
in the next harvest round. These yields are twice the yields predicted under
maximum intensities. Reducing logged volumes at first harvest obviously
increases future yields, as second harvest volumes are divided by a lower
number. Additionally, these simulations assume that trees not logged in the first
harvest round will be available in the following round, which is not always the
case. Trees that may be available in the next round are those (above MCD) that
were not logged for being rather small (larger trees are preferentially logged), for
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a lack of commercial demand, or for safety reasons (e.g., crowns covered with
lianas). However, trees with rotten stems, for which rotting was discovered only
at logging, will still present rotten stems in the next round and not be available.
Although we used the most realistic estimates of logging intensities, our
simulations thus overestimate the available trees in future logging cycles and
thus also overestimates future yields. Although yields increase when applying
realistic field-based intensities with realistic growth trajectories from tree-
rings, our results still suggest moderate to strong declines in available timber
in the future.

Outlook and recommendations

The low predicted yields clearly suggest that the volumes exploited at the
first logging round will not be sustained in the following cycle. Declining
yields are in line with other studies (summarized in Putz ef al., 2012), and are
considered almost inevitable, as the remaining trees cannot grow back the
volume accumulated over many years — for our species often over more than
50 years (Figure 3.7) — within current (or reasonable) logging cycle length.
This amount of accumulated volume over the years is also called the ‘primary
forests premium’ (cf. Keller et al, 2007). Although species-specific yield
declines may be inevitable, it is essential to avoid forest level overexploitation
of timber resources. Unsustained species-level yields should thus not lead to
unsustainable forest use, i.e., to the conversion of forests to other land-uses.
Increasing logging cycle lengths or minimum cutting diameters (MCD),
or decreasing logging intensities, are measures that can ensure a more
sustainable forest use. However, increasing logging cycle length requires long-
term investments, which are hampered by the unstable politico-economical
environments in many tropical countries. Increasing the MCD or reducing
logging intensities — while maintaining logging cycle length — are then more
viable options. That actual intensities in the field for three of the species are
lower than the maximum allowed, is hopeful, and future yields increased
remarkably under field-based intensities for these species (up to 73% of initial
volume was recuperated). The lower field-based intensities imply that the
primary forest premium is ‘spread’ over subsequent logging cycles, increasing
the long-term financial viability of timber exploitation. However, for E. utile —
the species with the highest commercial value — actual intensities were similar
to the maximum allowed and predicted yields were low. For species with high
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value but low abundances, increasing MCD is then crucial to not overexploit
them, and the high MCDs for Entandrophragma spp. in Cameroon (80-100cm;
TRC 2009) is hopeful. Nonetheless, timber exploitation usually focusses on
only a handful of these high-value species (Holmes et al., 2002; Ruiz-Pérez
et al., 2005), and we expect that for most of them logging intensities are
consistently high. Shifting exploitation to include more species — in our study
area 72 species were inventoried for exploitation — is fundamental to maintain
forest-level timber yields (Putz et al., 2012). Any measures to stimulate the use
of these ‘lesser known species’ are highly encouraged (e.g., ITTO, 1990), and
current exploitation should ideally already broaden the focus of exploitation
to include a higher number of species.

Silvicultural measures may be taken to enhance the growth of future
crop trees, such as liberating them from lianas (Pefia-Claros et al., 2008) and
thinning of the forest after logging (Gourlet-Fleury et al., 2013). Additionally,
measures such as enrichment planting or tending of natural regeneration may
be needed to guarantee future timber stocks (Doucet et al., 2009; Schwartz et al.,
2013), as the sustainability of logging will ultimately depend on the successful
establishment the exploited species. However, depending on their intensities,
these silvicultural measures may be expensive (Mostacedo & Fredericksen,
1999) and long-term monitoring is required to evaluate their effectiveness and
economic viability (e.g., Pefia-Claros et al., 2008; Gourlet-Fleury et al., 2013).
Ideally, such evaluations should also include the demographic consequences
of logging (e.g., Verwer et al., 2008; Free et al., 2014; Grogan et al., 2014), using
population models that incorporate the effects of logging on the regeneration,
mortality and growth rates of a tree species. Population models should also be
used to project future timber yields, as these models result in more realistic
projections of population growth by explicitly incorporating the variation in
vital rates (e.g., growth, reproduction, survivor) for a species (e.g., Zuidema et
al., 2010).

Future yield predictions were also low for the fast growing T. ivorensis,
suggesting that yields do not depend solely on the ages of trees to reach MCD.
Many factors drive future yields, including management factors such as the
length of the cutting cycle, MCD, and logging intensities. Also, species (and area)
specific factors, such as, diameter distributions, growth rates of trees (below
and above MCD), local abundances, and mortality rates are important drivers
of future yields. Accurate simulations of future yields obviously depend on
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accurate input data: growth data (from rings), inventory data and estimations
of mortality rates. There is thus a pressing need for high-quality and long-term
monitoring of the consequences of logging on tropical forests(e.g., Pefia-Claros
et al., 2008; Gourlet-Fleury et al., 2013). Only with such long-term data can yields
simulations be expanded further than one or two logging cycles. The varying
logging intensities, clustered abundances of trees in the field, and varying
commercial demand also mean that yield predictions strongly vary from year to
year. This complexity of factors ultimately requires a flexible and adaptive forest
management, ideally one that bases decisions of logging intensities and MCDs
on species-specific vital rates.

Finally, strict protection of forest areas will continue to be essential
to conserve the biodiversity of tropical forests (Gibson et al., 2011). However,
selectively logged forests retain important environmental values, such as
high-levels of biodiversity (Berry et al., 2010) and the storage of carbon (Sist et
al., 2014). The large area of forests designated for production — more than 403
million hectares (Blaser et al., 2011) — combined with the environmental value
they retain, implies that sustainably using these forests is key to conserving
tropical forests in the future (Edwards ef al., 2011). Measuring sustainability
using timber yields may provide a bleak picture. However, emphasis should
lay on sustainable forest use: extracting goods and services while maintaining
forests standing in the best condition possible. Ensuring long-term financial
viability of forest use is essential to avoiding conversion to non-forest land
uses and timber yield projections can be used as an indicator of this viability.
Increasing the number of species exploited while lowering logging intensities on
the most exploited species is a promising way forward to avoid overexploitation
of these species, therewith enhancing the ecological sustainability of forest
exploitation. Additionally, ensuring higher prices for ‘sustainably’ logged timber
may lead to shifts to better forest management practices (Meijaard et al., 2005).
Combined with payments for ecosystem services, e.g., carbon-offset schemes
(e.g., under REDD+; Loarie et al., 2009) sustainable forest use may be achievable,
both financially and ecologically.
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Chapter 4

Abstract

Tree-ring analysis is often used to assess long-term changes in tree growth. A
variety of growth-trend detection methods (GDMs) exist to disentangle age/
size trends in growth from long-term growth trends. However, these methods
strongly differ in approach, with possible implications for their output. Here we
critically evaluate the consistency, sensitivity and reliability of four most widely
used GDMs: Conservative Detrending applies mathematical functions to correct
for decreasing ring-widths with age; Basal Area Correction transforms diameter
into basal-area growth; Regional Curve Standardization detrends individual
tree-ring series using average age/size trends; and Size Class Isolation calculates
growth trends within separate size classes. First, we evaluated whether these
GDMs produce consistent results applied to an empirical tree-ring dataset
of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded
similar results — a growth decline over time — but the widely used Conservative
Detrending method did not detect any trend. Second, we assessed the sensitivity
(probability of correct growth trend detection), reliability (1- probability of
detecting false trends), and accuracy (whether the strength of imposed trends
is correctly detected) of these GDMs, by applying them to simulated growth
trajectories with different imposed trends: no trend, strong trends (-6% and
+6% change per decade), and weak trends (-2%, +2%). All methods except
Conservative Detrending, showed high sensitivity, reliability and accuracy to
detect strong imposed trends. However, these were considerably lower in the
weak or no-trend scenarios. Basal Area Correction showed good sensitivity and
accuracy, but low reliability, indicating uncertainty of trend-detection using this
method.Our study reveals that the choice of GDM influences results of growth-
trend studies. We recommend applying multiple methods when analysing
trends and encourage performing sensitivity and reliability analysis. Finally, we
recommend Size Class Isolation and Regional Curve Standardization, as these
methods showed highest reliability to detect long-term growth trends.
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4.1 Introduction

Worldwide, forests store and process large quantities of carbon (Pan et al.,
2011). Changes in the growth rates of forest trees affect their net uptake or loss
of carbon and may therefore have large consequences for the global carbon
cycle (Bonan, 2008). Tree-ring analysis yields long-term growth data — covering
centuries (Koutavas, 2013) to millennia (Salzer ef al., 2009; Esper et al., 2012) —
that can be used to detect such growth trends. Tree-ring analysis has been widely
applied for this purpose on boreal and temperate tree species (e.g., Briffa et al.,
1998; Esper et al., 2010; Villalba et al., 2012) and more recently there is increasing
attention to use this tool for assessing long-term growth trends in tropical tree
species (Rozendaal et al., 2010a; Bowman et al., 2013; Zuidema et al., 2013).

Tree-ring series contain information on tree-growth responses
to different drivers that vary on different time scales (e.g., from years to
centuries). Year-to-year variations in growth rates are often driven by inter-
annual fluctuations in precipitation and temperature (Schongart et al., 2006;
Subedi & Sharma, 2013), while decadal-scale variations are mostly responses to
changes in light availability due to canopy dynamics (Brown & Wu, 200s; Baker
& Bunyavejchewin, 2006). Long-term variations — spanning several decades to
centuries —may reflect responses of trees to gradual environmental changes (e.g.,
in precipitation, temperature, or CO, concentration), but may also reflect age/
size dependent trends in growth (i.e., caused by the ontogenetic development;
cf. Briffa & Melvin, 2011). Detecting long-term growth trends using tree-rings
requires disentangling these ontogenetic and short-term environmental signals
from trends driven by gradually shifting environmental conditions.

Over the past decades, various growth-trend detection methods
(henceforth referred to as GDMs) have been developed to detect environmental
growth trends in tree-ring series and correct for the inherent age/size trends in
growth (cf. Briffa et al., 1998; Esper et al., 2002; Biondi & Qeadan, 2008). While
having similar aims — correcting for the age/size trend to reveal externally
forced growth responses — GDMs differ largely in their approach; as illustrated
in Figure 4.1 for the four most widely applied GDMs. GDMs correct for the age/
size trends in quite different ways: by detrending growth of trees using curves
that describe the age/size trend (Conservative Detrending or Regional Curve
Standardization), by expressing growth rate in basal area instead of diameter
(Basal Area Correction), or by comparing growth rates inside fixed age or size
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classes (Size Class Isolation). Trend analyses is then performed on the detrended
data, on the corrected growth rates or on raw growth rates. Given the large
differences in approach between GDMs, it is pertinent to (1) evaluate whether
GDMs yield consistent output when applied on a single dataset, (2) assess the
sensitivity and accuracy of GDMs to detect growth trends, i.e., the probability
and strength of correct trend detection, and (3) quantify their reliability, i.e.,
one minus the probability that erroneous growth trends are detected. While
individual GDMs have been evaluated and weaknesses have been noted for
several GDMs (e.g., Esper et al., 2003; Biondi & Qeadan, 2008; Briffa & Melvin,
2011), only in rare cases have studies applied and compared multiple GDMs (e.g.,
Briffa et al., 1992; Esper et al., 2010; Andreu-Hayles et al., 2011). A comparative
analysis and critical evaluation of the most commonly used GDMs in tree-ring
research is therefore needed.

Here we critically evaluate the performance of the four most widely
applied GDMs (shown in Figure 4.1). We first reviewed the available literature
on the application of these GDMs in temperate, boreal, sub-tropical and tropical
tree-ring studies. Then, we assessed their consistency, sensitivity and reliability
using a combination of measured and simulated growth data. To evaluate the
consistency in results across GDMs, we applied the four GDMs on tree-ring
series from a tropical species from Thailand. Next, we applied these GDMs on
simulated growth data with imposed growth trends to assess their sensitivity,
accuracy and reliability. We simulated five growth-trend scenarios: two with
strong positive and negative growth trends, two with weak trends, and one
with no growth trend. Finally, we discuss differences in sensitivity, accuracy,
consistency and reliability of GDMs and provide recommendations for GDM
choice in tree-ring studies.
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Figure 4.1. Schematic representation of the four Growth-trend Detection Methods (GDM) most
commonly used to analyse long-term growth trends using tree-rings: Conservative Detrending (CD),
Basal Area Correction (BAC), Regional Curve Standardization (RCS) and Size Class Isolation (SCI). The
first column indicates how GDMs disentangle the age/size trend (i.e., the ontogenetic signal) from long-
term growth trends. See the Methods section for more detailed explanation of the methods. The second
column shows how trends are computed: either on raw or on residual growth rates over time, using
Spearman’s rank correlations. The third column represents how we present detected trends in this study:
grey dot = no growth trend; green = temporal growth increase; and red = growth decrease. Results are
presented for All trees (i.e., for all measured tree-rings) or per size category: Small trees = trees 0-27 cm
diameter; Medium = 27-54 cm; and Large = trees > 54 cm diameter.
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4.2 Materials and methods

Growth-trend Detection Methods (GDMs)

We performed a literature review to document which GDMs are most commonly
used in tree-ring studies. Published papers were collected using Scopus and
Google Scholar with one, or a combination, of the following search terms: tree-
rings; dendrochronology; dendroecology; long-term growth trend; climate
change; CO, fertilization; tree growth; climate-growth responses; basal area
increment; regional curve standardization; age classes; and conservative
detrending. We then selected publications in which GDMs were used and for
each publication in this selection we noted the GDM(s) used, the period covered
by growth trend analysis, study species and site, and growth trend(s) detected.

Below, we describe the methods and assumptions of the four most
widely used GDMs: Conservative Detrending, Basal Area Correction, Regional
Curve Standardization and Size Class Isolation. Figure 4.1 provides a schematic
overview of the crucial steps within the application of each GDM: ‘Age/size
correction’ shows how the ontogenetic trend is accounted for in the raw data;
‘Trend analysis’ indicates the chronology construction and regression analysis;
and ‘Output’ how we present results of the trend analyses. Over time, several
variations and new methods have been developed to cope with the (supposed)
limitations of each GDM: signal-free standardization (Melvin & Briffa, 2008),
age-band decomposition (Briffa et al., 2001)2001, C-method standardization
(Biondi & Qeadan, 2008), or the integration of different methods into mixed-
effect models (e.g., Girardin et al., 2008; Nock et al, 2011). Although these
variations exist, in this study we focus on the four most widely applied GDMs in
their most basal form.

In Conservative Detrending (henceforth CD), mathematical function
are fitted to individual ring-series (Figure 4.1; see ‘Age/size correction’) to
account for the decrease in ring-width with tree age (i.e., the ontogeny) and
residual growth is calculated around these functions. The fitted functions can
be (rigid) splines (e.g., Kienast & Luxmoore, 1988; Andreu-Hayles et al., 2011) or
‘conservative curves’ (i.e., negative exponential, linear regression, or horizontal
lines; cf. Wang et al., 2006; Koutavas, 2013). Residuals are calculated by dividing
measured ring-widths by the fitted function. This method assumes that the fitted
functions describe the decrease in ring-width with age of each individual, while
fully or partially maintaining the long-term growth trends. Long-term growth
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trends are then calculated over the residual chronology (the average residual per
year) and related to calendar year (Figure 4.1, see ‘Trend analysis’).

In the Basal Area Correction (BAC), the age/size trend is removed by
converting diameter growth (in cm yr?) to basal area increment (BAI, in cm? yr?;
Figure 4.1). This method assumes that growth in BAI shows no trend in mature
trees, contrary to diameter growth that often shows decreases with increasing tree
size (Martinez-Vilalta et al., 2008; Silva et al., 2010). For each tree, BAI is calculated
and growth trends in time are computed over the BAI chronology (Figure 4.1).

In the Regional Curve Standardization (RCS), an average age/size trend
is calculated to describe the ontogeny, i.e., the ‘regional curve’, and individual
tree-ring series are then divided by this average curve (cf. Esper et al., 2003; Cole
etal., 2010). To establish the regional curve, ring widths of all individuals are first
aligned to cambial age (years from the pith; Figure 4.1, see Age/size correction)
and average growth rates are calculated for each age. A mathematical smoothing
function is fitted through these averages per age to describe the relationship
between growth and age (i.e., the regional curve). Ring-widths of individual
trees are then divided by the expected growth for each cambial age. This process
assumes that the age/size trend of the species is realistically described by the
tree-ring series and that the regional curve is independent from long-term
growth trends induced by environmental changes. Temporal trends in growth
are calculated over the residual chronology, related to calendar year (Figure 4.1,
see Trend analysis’).

In the Size Class Isolation (SCI), the age/size trend in growth is not
accounted for by curve fitting or data transformations. Instead, growth trends
are analysed directly within an ontogenetic stage, i.e., within the same age or size
classes for extant large/old trees and extant small/young trees (Landis & Peart,
2005; Rozendaal et al., 2010a). Growth of small trees are thus compared with
growth of large trees when they were small (Figure 4.1, see ‘Age/size correction’).
For instance, growth rates at a diameter of 12 cm can be compared between
extant small and extant large trees and related to their corresponding calendar
years to evaluate growth trends over time (e.g., Rozendaal et al., 2010a; Zuidema
et al., 2011; Figure 4.1, see ‘Trend analysis’). This method assumes that trees
within a size class present similar growth rates and comparing growth within
a size class thus removes the effect of the age/size trend. Trends are calculated
over the raw growth data, in diameter growth or BAI, related to calendar year
(Figure 4.1, see ‘Trend analysis’).
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Empirical tree-ring series: Melia azedarach

We applied the four GDMs on tree-ring series for Melia azedarach A. Juss
(Meliaceae, henceforth called Melia) in order to evaluate the consistency of
results between methods. Melia is a deciduous, long-lived pioneer (up to 120
years) known to form high-quality annual rings (Vlam et al., 2014b). We collected
increment cores of 90 Melia trees (three to four cores per tree) in the Huai Kha
Khaeng Wildlife Sanctuary, west-central Thailand (between 15°50’ to 16°00° N
and 99°00’ to 99°28’E), in an undisturbed and unlogged area of the forest. Core
surfaces were prepared, scanned at 1600 dpi with a flatbed scanner (Epson
Expression 10000 XL) and ring-widths were measured using WinDENDRO
(Regent Instruments Canada Inc. 2004). Average ring-widths for the different
radii were converted to diameter increment prior to trend analysis. More
detailed descriptions of the study site, sampling methods and ring measurement
procedures are given in Vlam et al. (2014b) and in the Supplementary Materials
(Appendix A).

Simulated tree-ring series

We simulated virtual growth trajectories that mimicked the growth characteristics
of Melia, to allow for comparison of GDM outputs between measured and
simulated data. Individual tree-ring series were simulated based on the following
variables for Melia: the age trend in BAI, response to annual climatic variation, and
the temporal autocorrelation of tree-growth. In addition, we included stochastic
variation in the tree-growth simulations. A constant annual mortality chance of
1% was applied randomly for all simulated trees, independent of size class. Virtual
tree-ring series were simulated for a period of 108 years (from 1901-2009). Every
year, 300 new individuals were ‘recruited’ (at 1 cm diameter), thus creating a large
amount of surviving series (>10,000) in the year of ‘sampling’ (i.e., in 2009). A full
description of the tree-growth model is included in Appendix B.

We ran five different simulations, applying a gradient of imposed
growth trends per decade: strong (-6%) and weak (-2%) growth decreases, no
growth trends, and weak (+2%) to strong (+6%) growth increases. In the weak
trend simulations, we imposed linear growth trends of 0.002 per year in both
directions (i.e., a 2% change per decade) and in the strong trends, we imposed
growth trends of 0.006 per year (6% change per decade). These growth changes
were chosen as they resemble changes reported for permanent sample plots
in tropical forests (cf. Lewis et al., 2009a). The no-trend simulations contained
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no growth trends, as none of the input values showed trends over time. All
simulations were performed in Matlab v8.1 (The Mathworks).

From the >10,000 surviving simulated tree-ring series, we created a
database of 100 series randomly selected to be analysed for trends using the four
GDMs. We chose this sample size as it is approximately the size of the empirical
Melia dataset and similar to that of many (tropical) tree-ring studies. For
every growth-trend scenario we created a fixed random selection of trees and
applied all GDMs to detect trends on this selection. By repeating this random
selection 100 times, we were able to assess the sensitivity of each method, i.e.,
the percentage of correct trend detections.

We also assessed the reliability, accuracy and consistency in trend
detection for each GDMs under the different scenarios. The reliability of a GDM
is defined as 100% minus the percentage of cases that erroneous growth trends
were detected. We define the accuracy of a method as how well the strength of
the imposed trends is reflected in the detected trend, i.e., is an imposed growth
trend of 6% per decade translated to a detected trend of 6% per decade. For this
purpose, we calculated the (relative) slope of the detected trends by the different
GDMs and whether they coincided with the imposed trends. Finally, we used the
simulated data to assess the consistency in trend detection between GDMs by
analysing whether GDMs detected trends similarly when applied on the same
random datasets (as also performed for Melia). To exclude any effect of the
random selection of trees on the sensitivity, reliability, accuracy and consistency
calculations, we repeated these analysis ten times, using ten different ‘fixed’
random datasets.

Implementation of Growth Detection Methods (GDM:s)

GDMs were applied to both empirical and simulated tree-ring series. We applied
CD using conservative curves (negative exponential curve, linear regression, or
horizontal line), fitted to the diameter increments of each measured and virtual
tree-ring series, using the dplR package in R (Bunn, 2008). Residuals ring-width
series were calculated by dividing measured ring-widths by the fitted function
and trends were calculated over average residuals per calendar year (i.e., the
chronology). BAI conversion was performed using standard formulas (cf. Phipps
& Whiton, 1988; Silva et al., 2010; Gdmez-Guerrero et al., 2013). BAI of all individual
series was then aligned to calendar year and trends were calculated over average
BAI values per year. We applied RCS following Esper et al. (2003), determining the
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regional curve (i.e., the average age/size trend) for Melia by aligning all individual
growth-rate series to cambial age. To obtain a regional curve not driven by annual
variations in growth, we smoothened the curve using a 15-year spline function.
Residuals were calculated by dividing the tree-ring series by the regional curve
and trends calculated over average residuals per calendar year. For SCI, we applied
classes of 4 cm diameter, i.e., every ring falling in a cumulative diameter class of
subsequently 4 cm (e.g., at 4cm, 8cm, etc.) was marked as a central ring (Figure 4.1).
To obtain growth values not driven by annual variations, growth rates per class
were calculated as an average BAI of five rings: that of the central ring plus the two
previous and two subsequent rings. In the case of missing rings (e.g., at the start
or end of series) averages were calculated for at least four rings.

For each GDM, growth data (i.e., in either BAI or residuals) were
related to calendar year to analyse long-term growth trends. For the sensitivity
and reliability analysis, we tested for the presence of significant trends using
Spearman’s rank correlation coefficients (significance level p < 0.05; Figure 4.1
see ‘Output’), as most data were not normally distributed. For the accuracy and
consistency calculations, we assessed the magnitude of the trend detected by
fittinglinearregression modelstoeach dataset. We then determined how strongly
the imposed trends were reflected in the GDM results and whether the detected
slopes corresponded to the imposed trends. For these analysis, we included all
correlations, including non-significant ones. The strength of the detected trend
was expressed in relative change per decade, i.e., expressed in percentages. To
calculate relative slopes for SCI and BAC, we divided each detected slope by the
average growth rate. For RCS and CD, we used slopes directly as these already
reflect relative growth changes. For the consistency analysis, we used the RCS as
a reference method and computed the correlation between the slopes detected
by the other methods and the RCS’ (see Appendix C).

In the SCI, trends were calculated for each size class containing at least
10 individuals. For CD, BAC and RCS, we excluded all calendar years with less
than five individuals prior to trend analysis. Furthermore, for CD, BAC and RCS
we analysed correlations for all series (all trees), but also for tree diameter at
breast height (DBH) size classes separately: 0-27 cm (understory trees), 27-54 cm
(small canopy trees) and >54 cm (large canopy trees). For ease of comparison
we calculated the sensitivity and reliability for the SCI as an average of all the
size classes. All statistical analyses were performed using the R software for
statistical computing, version 3.2.00 (R development core team 2013).
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4.3 Results

The use of GDMs in literature

We found a total of 46 studies on 77 species in which GDMs were used to
detect growth trends. In total, 99 datasets of unique species x location x GDM
combinations were evaluated (Figure 4.2 and Appendix D). In a few cases, two or
more GDMs were used on the same dataset (e.g., Piovesan et al., 2008; Esper et
al., 2010; Andreu-Hayles et al., 2011). The studies were unevenly distributed over
temperate, boreal, and tropical regions, with just four studies conducted in the
tropics (13 datasets).

CD was the most widely applied GDM in all studies, with 20 studies on
in total 46 datasets. In 26 of these 46 datasets positive long-term growth trends
were reported, whereas 15 datasets showed no growth trends. SCI was the most
applied method for tropical species, with two studies on nine datasets.

Figure 4.2. Results of a literature review of the most commonly used Growth-trend Detection Methods
(GDM). A total of 46 studies on 77 species are presented, comprising of 99 datasets of unique species x
location x GDM combinations. Bar colour indicates whether positive trends (green), no trend (grey) or
negative trends (red) were detected. GDM abbreviations: Conservative Detrending (CD), Basal Area
Correction (BAC), Regional Curve Standardization (RCS) and Size Class Isolation (SCI).
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Detecting long-term growth trends in Melia tree-ring series

We analysed growth trends in the Melia tree-ring series using the four GDMs to
assess differences in their output. Results for CD, BAC and RCS are presented
for four size categories: all trees, small (0-27 cm DBH), medium (27-54 cm) and
large trees (>54 cm). For SCI, results are presented per 4-cm size class (Figure
4.3) and we include a clarification on how trends were computed in SCI in a
manner analogous to Figure 4.1.

Figure 4.3. Results of the analyses of long-term growth trends on the tree-ring series of Melia azedarach.
(a) Trends detected by each Growth-trend Detection Methods (GDM): Conservative Detrending (CD),
Basal Area Correction (BAC), Regional Curve Standardization (RCS) and Size Class Isolation (SCI).
Negative trends (red) and non-significant trends (grey) are presented for different diameter categories
(in Spearman’s rho, significance level p < 0.05). (b) Procedure and results of the SCI method: tree growth
of all - small and large — individual trees is arranged to tree size (left panel) and average growth rates (of
five years) are calculated within specific diameter classes, e.g., Class 20 and Class 60 cm. For each diameter
class, growth rates are then arranged to calendar year (right panel) and trends computed over time, e.g.,
in the Class 20 cm, a negative trend was detected (red dot at 20 cm (in a)).
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The trends detected for the Melia tree-ring series varied between specific
methods. Three GDMs detected consistent negative growth trends over time:
BAC, RCS and SCI. These trends were found for small and medium sized trees
(BAC and RCS) and for 8-44 cm diameter trees (SCI). RCS was the only method
detecting trends in the category all trees. Trends detected by BAC, RCS and SCI
were highly significant (mostly p < 0.001). The non-significant results for CD in
all size categories (p > 0.05) clearly contrasted with the highly significant results
obtained by the other GDMs.

In short, three out of four methods (BAC, RCS and SCI) yielded evidence
for declining growth rates over time in small and medium-sized Melia trees.

Detecting imposed long-term growth trends on virtual growth
trajectories

We generated virtual growth trajectories mimicking the growth of Melia, to
assess the sensitivity, reliability, accuracy and consistency of the four GDMs. The
input of the model consisted of factors for the age/size trend, climate-growth
relationship, growth autocorrelation (of 15 years) and stochastic variation. The
modelled data mimicked the growth of Melia very well: modelled growth showed
a similar age/size trend (and variation around it; Figure 4.4A) and similar year-
to-year variation (Figure 4.4B) to the Melia data. This year-to-year variation was
induced by theinputfactor for climate-growth relationship. Webuilta chronology
for the modelled data — on the same way as for Melia (see Appendix A) — that was
highly similar to this input climate-growth factor (R* = 0.956, data not shown).
Analysis a posteriori on the no-trend scenario dataset showed that the age/size
trend explained 18.8% of the variation in all growth data while climate explained
8.4% of the variation remaining after removal of the age/size trend (by dividing
individual series by the input formula for the age/size trend). The remaining
variation, not explained by the age/size trend or climate, can be attributed to the
factor for stochastic variation and to the autocorrelation in growth. Growth in
the simulated growth curves data was on average significantly autocorrelated
for up to six years (data not shown). The simulation of positive and negative
trends also clearly affected the modelled growth data (and its average variation),
as shown in the mean basal-area chronology for each scenario (Figure 4.4C).
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Figure 4.4. Simulated growth trajectories based on Melia azedarach and examples of the imposed growth
trends. (a) Relationship of basal area increment (BAI) per cambial age for the simulated data (in the no-
trend scenario; grey) and the measured growth rates for M. azedarach (orange). (b) Relationship of BAI per
calendar year between modelled (grey) and measured data (orange). Lines represent average BAI for all
measured or simulated series and shading their standard deviations. (c) Relationship of average BAI per
calendar year for the five imposed growth trend scenarios: strong increases (i.e., 6% growth trend per
decade; dark green line), weak increases (2% trend, light green), no trend (grey line); weak decreases (light
red) and strong decreases (dark red).

Next, we assessed how well GDMs detected growth trends imposed on
the virtual growth trajectories. Sensitivity (i.e., percentage of imposed growth
trends correctly detected) varied considerably among GDMs (Figure 4.5, Table
4.1). On the datasets with the strongest imposed growth trends (i.e., 6% increase
and decrease), BAC, RCS and SCI often correctly detected the direction of the
imposed trends (Table 4.1). For these three GDMs, sensitivity was higher with
imposed strong negative growth trends (93-100% of cases) than with positive
trends (30-99%) and this difference was most evident in the SCI. CD had the
lowest sensitivity, detecting almost none of the strong imposed positive trends
and only 36% of the strong negative trends.
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Table 4.1. Sensitivity and reliability of four growth-detection methods (GDM)* applied to a range of
growth trends imposed to simulated tree-ring series. Sensitivity refers to the percentage of correct
detection of the imposed growth trend. Reliability is 100% minus the percentage of erroneous growth-
trend detections. Values are presented as an average of 10 analyses + standard deviations. For SCI the
results are presented as the average of all size classes and for the other methods, for the ‘All trees’ size
category.

GDM* Imposed growth trend (per decade) Mean
6% -2% <] 2% 6%
CDh Sensitivity 36.4 +6.4 5.5 +2.9 95.9 +1.8 1.5 +1.2, 0.8 +1.2 28
Reliability 98.6 +1.1 98.7 +1.2 95.9 +1.8 97.9 1.1 99.4 +0.7 98.1
BAC Sensitivity 100.0+0.0  66.9 +4.6 66.7 +4.3 56.543.6 98.9 +1.0 77.8
Reliability 100.0+0.0 98.9+40.9  66.7+4.3 97.4 +1.4 100.0 +0.0 92.6
RCS Sensitivity 100.0+0.0  37.6 3.7 85.3+4.0  35.643.7 86.3 +4.0 69
Reliability 100.0+0.0 99.2+1.0  853#4.0  99.7+0.5  100.0+0.0 96.8
SCI Sensitivity 93.240.6  23.4+1.8 93.940.5  7.140.9 30.5 1.3 49.6
Reliability 100.0+0.0 99.9#0.1  93.940.5  98.5+0.2  99.6+0.2 98.5

* CD = conservative detrending; BAC = basal area correction; RCS = regional curve standardization;
SCI = size class isolation

Sensitivity decreased for all GDMs when detecting weak imposed growth
trends of 2% increase or decrease, compared to the strongest (6%) simulated
trends. For BAC and RCS, sensitivity was intermediate, with trends correctly
detected in 36-67% of the simulations, whereas SCI had a lower sensitivity of
7-23%. Again, CD had the lowest sensitivity, varying between 2-6%.

In the no-trend simulations, reliability was high for CD, RCS, and
SCI — varying between 85-96% of correctly detected ‘no trends’ — and was lower
for BAC (67%; Table 4.1). Erroneous trend detection also occurred in the 2%
increase and decrease scenarios (Figure 4.5), but overall, reliability was high
in all simulations with imposed growth trends (Table 4.1). For BAC the lower
reliability in the no-trend scenarios, compared to the other methods, was not
reflected in the scenarios with imposed trends: reliability was high, with > 97%
of trends correctly detected.

The accuracy of trend detection (i.e., correctly detecting the strength
of the imposed trends) also varied between GDMs. CD showed nearly no
differences in the strength of detected trends between increasing, decreasing
and no-trend scenarios: detected slopes varied between 0.0% to 1.0% growth
trend per decade (Figure 4.6, Supplementary Table 4.4 Appendix C). The other
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GDMs appear to underestimate the detection of positive trends: in the scenarios
with 2% growth increases growth trends were detected varying between 0.4%
and 1.1% per decade and in the 6% increase scenarios between 1.7 and 3.5%. In the
scenarios with growth decreases, on the other hand, BAC and SCI overestimated
the imposed trends, e.g., in the 6% decrease scenario, growth decreases of >11%
were detected (Figure 4.6, Supplementary Table 4.4 Appendix C). It is also clear
that both BAC and SCI show a higher spread of detected trends, i.e., wider
distribution of detected slopes, compared to the RCS (Figure 4.6).

Consistency in detecting trends was high between BAC and RCS: the
detected trends showed high correlations for all different scenarios (average
R? = 0.678; Supplementary Table 4.5 in Appendix C). The slopes detected by SCI
correlated less strongly with the RCS’ (R* = 0.192), while for CD, the detected
slopes did not correlate at all (R = 0.022). For more detailed results on the
consistency, see Appendix C in the Supplementary materials.

In short, sensitivity varied between methods: detection of trends was
good when 6% trends were imposed but lower with the 2% trends. Reliability
was high on the simulations with imposed growth trends but erroneous trends
were detected in the no-trend simulations, with results varying between GDMs.
Accuracy also varied between GDMs: in CD nearly none of the imposed trends
were detected and the remaining methods tended to underestimate the imposed
positive trends, while overestimating the negative trends. Finally, methods are
rather consistent in detecting trends when applied on the same datasets.
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Figure 4.5. Results of the analyses with simulated growth trajectories for four Growth-trend Detection
Methods (GDM). Significant negative (red) and positive trends (green), and non-significant trends (grey)
are presented per GDM (in Spearman’s rho, significance level p < 0.05) for different diameter categories.
Results are presented for one subset of 100 times 100 trees per imposed trend. GDM abbreviations:
Conservative Detrending (CD), Basal Area Correction (BAC), Regional Curve Standardization (RCS) and
Size Class Isolation (SCI).
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Figure 4.6. Comparison of slopes detected by the Growth-trend Detection Methods (GDMs; density plots)
for each of the imposed growth-trend scenarios and runs. Coloured lines show the distribution of all
slopes detected by the GDMs (as a Kernel density plots) and the vertical dotted lines the corresponding
imposed growth trends. GDM abbreviation: Conservative Detrending (CD), Basal Area Correction (BAC),
Regional Curve Standardization (RCS) and Size Class Isolation (SCI).

4.4, Discussion

Long-term growth trends for Melia azedarach
Three out of four growth-trend detection methods (GDMs) yielded similar
results: long-term decreases in growth for the Melia tree-ring series for similar
ranges of tree size (Figure 4.3). Application of Conservative Detrending did not
yield trends over time at all. The negative growth trends are consistent with
findings from Nock et al. (2011) who studied the same tree species at the same
site. They calculated trends in BAI over different size classes, with a method that
combines BAC and SCI, using a mixed effect model.

Identifying the causal drivers of decreasing growth rates is difficult
(Clark & Clark, 2011) and multiple factors have been suggested: increased drought
periods, increasing temperatures, closing of the canopy after disturbances (e.g.,
Nock et al., 2011; Middendorp et al., 2013). In addition, biases due to sampling
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methods (Nehrbass-Ahles et al., 2014) or related to the nature of tree-ring data
(Brienen et al., 2012a) could also lead to the detection of (apparent) trends. For
instance, the “juvenile selection effect” (cf. Landis & Peart, 2005; Rozendaal et al.,
20102) could create negative growth trends in a light-demanding species such as
Melia, where adult trees are probably the successful, fast-growing individuals from
the past. In addition to these methodological issues, we show here that the choice
of growth-detection method also influences the probability of detecting trends.

Applying Conservative Detrending (CD) did not yield significant trends
for Melia in any of the size classes. This lack in trend detection is to be expected
for CD (Briffa et al., 1992) as the functions fitted to individual ring-series may
not differentiate between age/size trends and trends induced by climatic
influence (Cook et al., 1995). Furthermore, this lack in trend detection may have
been reinforced by the relatively short length of our ring-series (i.e., life-span
of Melia ~100 years). On long series, function fit is mostly determined by the
age/size dependent growth trend in the series, whereas on short series function
fit is relatively more influenced by values at the end or beginning of a series,
hampering the detection of trends. This pattern of lower trend detections on
short series also emerged from the literature review: trends were detected by CD
in 90% (19 out of 22) of studies working with long series, i.e., lifespans >130 years,
while in just 43% (9 out of 21) of studies with short series (Appendix D).

The results on the Melia ring-series indicate that method choice
influences the detection of long-term trends. This influence was also suggested
by Esper et al. (2010) using multiple detrending methods on boreal trees. These
differences in trend detection between methods suggests that results of studies
using a single method should be interpreted with care.

Sensitivity, reliability, accuracy and consistency of growth-trend
detection methods (GDMs)

If different GDMs yield similar results, this may be reassuring, indicating that
the detected trend is likely. Yet, this does not imply that growth trends were
correctly detected or that they were present in the tree-ring series in the first
place. We addressed these issues by applying the four GDMs on simulated
growth trajectories that had imposed growth trends. These growth trend
scenarios, with either negative, no or positive trends as input, demonstrated
that GDMs vary in their sensitivity (i.e., power to detect imposed trends),
accuracy (i.e., how well the strength of trends are detected), and reliability (i.e.,
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1- the probability of detecting erroneous trends). Sensitivity was reasonably high
when strong growth trends (of 6%) were imposed, but decreased when imposed
trends were weaker (2%; Table 4.1). The accuracy of trend detection also differed
between methods, with a higher tendency to detect (or overestimate) imposed
negative trends than for positive trends (Figure 4.6). Similarly, the reliability of
trend detection was high in the scenarios with strong trends, but was lower for
the weak or no-trends scenarios (Table 4.1). In the following section, we discuss
specific results for each of the GDMs.

Conservative Detrending is assumed to sufficiently remove the
(negative) age/size trend in diameter growth, while maintaining long-term
trends. However, several weaknesses of CD have already been noted (Briffa &
Melvin, 2011) and detrending series individually has been suggested to inevitably
also removes long-term trends in growth (Briffa et al., 1992; Cook et al., 1995).
Our results confirm these suggestions, as CD showed the lowest sensitivity and
accuracy of the four methods (Table 4.1; Figures 5 and 6), implying that imposed
growth trends were completely removed from most simulated growth trajectories
(Table 4.1). Additionally, CD was the least consistent method in detecting trends,
i.e., slopes detected by CD showed nearly no correlation with slopes detected
by the RCS (Appendix C). Although these weaknesses have been noted, CD is
still widely applied (e.g., Wang et al., 2006; see Appendix D; Villalba et al., 2012).
This low sensitivity is also reflected by the relatively high proportion of studies
detecting no growth trends when applying CD (15 of the 43 reviewed datasets;
Appendix D), which is considerably higher than for other GDMs (Figure 4.2).
Similar to the Melia data, the complete removal of trends from the modelled data
may have been reinforced by the relative short length of the simulated growth
trajectories. Furthermore, the negative (exponential/linear) curves fitted in CD
may also not be suitable for describing the initial growing phases of trees, when
young growth years or young individuals are included. CD may thus be better
suited for detecting trends on long-lived species.

Basal Area Correction (BAC) showed high sensitivity and good accuracy
in detecting growth trends (Table 4.1; Figures 5 and 6) and trends detected using
BAC were consistent with those detected with RCS (Appendix C). However,
the reliability of BAC was the lowest of all methods, especially in the no-trend
simulations (Tables 1 and 2). The frequent detection of erroneous trends by only
expressing growth in basal area is worrisome, as BAC is still applied this way (e.g.,
Martinez-Vilalta et al., 2008; Silva et al., 2010) and this unreliability may lead to
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incorrect conclusions about growth trends. Our results suggest that BAC may not
effectively disentangle age/size from long-term growth trends. Indeed, growth of
Melia (and the simulations derived from Melia data) still show a clear age trend in
basal area increment (Figure 4.4A). If the age/size trend is not correctly accounted
for, trends may be induced by, for instance, changes in the relative abundances of
small (slow growing) and large (fast growing) trees over time.

Simply expressing growth as basal area has the advantage of avoiding
curve fitting procedures (as done in CD and RCS; Table 4.2). However, this
conversion may thus not suffice to remove the age/size trends and additional
steps are necessary to account for the remaining age/size trend when using BAC.
These steps may include: analysing trends inside specific size classes (e.g., only
for mature trees; cf. Jump et al., 2006); detrending the BAI series by an estimated
BAI growth trend (the C-Method, cf. Biondi & Qeadan, 2008); or incorporating
tree-size explicitly (e.g., in mixed-effect models) when analysing trends (e.g.,
Martinez-Vilalta ef al., 2008; Nock et al., 2011). Analysing trends inside specific
size classes mayindeed provide additional information, asillustrated in the trend
analysis for Melia. When analysing trends in specific size classes, trends were
detected for the small and medium size categories but not for all trees (Figure
4.3). Note that with small size classes, BAC effectively becomes analogous to
SCI. We also applied the C-method (cf. Biondi & Qeadan, 2008) to the simulated
data. Surprisingly, this method detected solely negative trends, irrespective of
the imposed trends (see for more details Appendix E). We believe that C-method
might not be suitable for short series, i.e., the small trees in our dataset, as it
cannot account well for the ontogenetic growth trends in these small/juvenile
trees (Biondi & Qeadan, 2008). We have not analysed trends using mixed-effect
models, as this was beyond our scope of comparing existing and widely used
methods. However, we believe that mixed-effect models, including generalized
additive mixed models (GAMM), have great potential to disentangle age/size
trends from long-term growth trends, as these models can simultaneously
account for linear (i.e., growth trends) and non-linear (i.e., age/size) trends in a
dataset (Wood, 2006; Polansky & Robbins, 2013). Such approaches are, however,
rare in tree-ring studies (e.g., Martinez-Vilalta ef al., 2008; Nock et al., 2011) and
should receive more attention. Finally, the detection of trends using BAC may
be hampered as growth (in basal area) may continually increase over a tree’s
life (Stephenson et al., 2014). If a species shows a continually increasing trend
in basal area growth over its life, BAC is hampered in disentangling age/size
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from long-term growth trends. However, such increasing growth trend poses
less of a problem for the other methods, as the age-trend (or size-trend) will be
accounted for by the fitted conservative curves, incorporated in the regional
curve or, for the SCI, trees will be selected from within a particular size class
(with its corresponding ‘average’ growth rate).

Table 4.2. Strengths and limitations of four different Growth-trend Detection Methods (GDM). Symbols
indicate whether strength or limitation is applicable: check mark = applicable; crosses = not applicable;
and question marks = still unclear / not assessed. Criteria are either assessed in this study or derived from
literature (as indicated). Sensitivity refers to the percentage of correct detection of imposed growth trend
and reliability = 100% minus the percentage of erroneous growth-trend detections. GDMs assessed: CD =
conservative detrending; BAC = basal area correction; RCS = regional curve standardization; SCI = size
class isolation.

Strength CcD BAC RCS SCI
High sensitivity (Table 4.1) x v v x
High reliability (Table 4.1) x x

Can be applied on untransformed growth data (Figure 4.1) x v x

Can be combined with climate-growth analysis (Figure 4.1) v v v x
Limitation

Timespan ring-series should extend span of the trend assessed* v ? v ?
Low detection power for larger diameter classes? x x x

Affected by sampling biases? v v v

'To avoid the trend-in-signal bias (cf. Briffa & Melvin, 2011).
2Sample size decreases with increasing diameter (e.g., for Melia, n=17 at 63 cm diameter).
3Slow-grower survivorship bias and big-tree selection bias (cf. Brienen et al., 2012).

Overall, Regional Curve Standardization (RCS) showed high sensitivity,
accuracy and reliability (Table 4.2). However, sensitivity was below 50% in the
scenarios with weak growth trends (2%; Table 4.1) and RCS underestimated
the strength of imposed positive trends (Figure 4.6). Weak (positive) growth
trends over time are thus not easily detected using this method. Applying RCS
requires large sample sizes (Briffa et al., 1992; Esper et al., 2002) and ideally
species showing a ‘strong’ age-size relationship, to enable the calculation of a
representative and ‘strong’ regional curve. Our light-demanding study species
- and the simulated series — showed such strong age/size relationship. RCS
may be less suitable for shade-tolerant species, as these species often exhibit
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rather weak age-size relationships (due to periods of slow or suppressed
growth). Finally, in RCS, the period covered by the tree-rings series should
ideally be longer than the period over which trends in environmental signals
are assessed (Table 4.2; e.g., Esper et al., 2002)2002, to avoid that externally
driven growth trends are incorporated into the regional curve (the ‘trend in
signal bias’; cf. Briffa & Melvin, 2011). In boreal and temperate regions, fossil
and sub-fossil wood are often incorporated to extend the timespan of long-
term growth reconstructions (e.g., Esper et al., 2012). In regions lacking fossil
wood (e.g., in the tropics, due to the high decomposition rates) it is necessary to
work with long-lived species when using RCS when analysing climate-change
effects on tree growth. For tropical studies, the combined requirements of
long life-spans and strong age/size relationships implies the RCS may be
better suited for long-lived pioneer species.

The Size-Class Isolation (SCI) method was not very sensitive but showed
high reliability (i.e., detecting few trends erroneously; Table 4.1 and Figure 4.5),
detected the imposed trends rather accurately (Figure 4.6) and rather consistent
with the RCS (Appendix C). Splitting the data into diameter classes reduces
sample size, as trends are calculated on average growth values per tree and not
on individual ring measurements. Sample size may be particularly low in smaller
diameter classes, due to missing piths when coring, and in large diameter classes, if
onlyasmall portion of trees are large. The low sensitivity of SCI may be explained by
these reduced sample sizes and working with SCI thus requires sampling relatively
large numbers of trees (Table 4.2). Furthermore, SCI requires including both large
and small trees, which is not always possible as many (tropical) species show
periodic absence of recruitment (e.g., Vlam et al., 2014a). Another limitation of SCI
is that determining size classes is a subjective process that may lead to analyses of
trends over a variety of size class for different species (e.g., Rozendaal et al., 2010a),
making comparisons between these analyses more difficult. Additionally, the
output of SCI is less suitable for establishing climate-growth relationships (Table
4.2), which hampers assessing which environmental factors may explain growth
trends. Despite its limitations, SCI showed low detection of erroneous trends, i.e.,
SCI is a reliable method. We argue that the reliability of a method is important,
as a conservative method is preferred over an unreliable method. Finally, another
advantage of SCI is that it directly evaluates growth trends on raw measurements,
and therefore is not influenced by (subjective) decisions on curve fitting that are
necessary for CD and RCS (Table 4.2).
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Overall, the four tested GDMs differed in their sensitivity, reliability,
accuracy and consistency. These results show that detection of long-term trends
is affected by method choice and suggest that the age/size trend may not be
completely removed in some methods. GDM sensitivity and accuracy varied, with
CD not detecting trends while the other methods underestimate positive trends
while overestimating negative trends. This stronger detection of negative trends
can in part be explained by the fact that growth cannot be negative in our modelled
data, orin real tree-ring data. Growth reductions over time force growth data nearer
to zero, reducing variation in growth data over time. The contrary is true for the
growth increase scenarios (see Figure 4.4C), in which growth variation increases.
We believe that the lower variation in growth in the decrease scenarios implies
trends are more easily detected, thus leading to the higher sensitivity and accuracy.

In our modelling approach, we attempted to assess how the variation
present in tree growth affects the detection of trends (i.e., an improved power
test) and determined each factor in the model using simple correlations. This
approach only accounts for the stochastic variation in growth and is of course a
simplification of all physiological and mechanistic factors affecting tree growth.
A modelling approach based on mechanistic or physiological processes could
greatly enhance the understanding of the effects climate change on tree growth
and how to detect them. Furthermore, our finding should be interpreted with
some care, as the growth characteristics of a specific species from the tropics do
not necessarily apply to other species from other regions. Despite the limitations
of our approach, we believe that it suffices when assessing the detection power
of the different GDMs and that it forms an important first step in disentangling
the effects of method choice on the detection of long-term growth trends.

Recommendations for growth trend detection
Tree-ring analysis has been widely applied to detect growth trends in boreal
and temperate tree species and there is growing interest in using tree-rings for
the same purpose for tropical tree species (Bowman et al., 2013). In this paper
we focused on the four methods most widely used in tree-ring research to
disentangle age/size trends from long-term growth trends. Below we provide
recommendations for tree-ring studies analysing trends in growth.

Our results suggest that, to detect long-term growth trends,
Conservative Detrending (CD) is not very suitable, that Basal Area Correction
(BAC) is not always reliable and that the Regional Curve Standardization (RCS)
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and Size Class Isolation (SCI) show good potential. Using CD, no trends were
detected in the Melia tree-ring data and in nearly all simulated growth data.
We recommend not using CD to evaluate trends, especially when working with
short-lived species, and CD may be better suited when analysing climate-growth
relationships. Basal Area Correction showed high sensitivity and accuracy,
but showed the lowest reliability (i.e., it also detected trends erroneously).
This low reliability is problematic, as determining when a trend is correctly or
erroneously detected in measured ring data is difficult. Great care should thus
be taken if only expressing growth in basal area. Several additional steps can be
taken to improve analysis with BAC, as discussed above. The high sensitivity of
BAC merits assessing which of these steps effectively increase BAC’s reliability.

For future tree-ring studies analysing growth trends, we recommend
the use of several trend-detection methods. We believe that combining the
sensitive RCS with the reliable but somewhat conservative SCI would yield
robust results. RCS showed high sensitivity and reliability and the SCI, despite
its low sensitivity, was the most reliable method (i.e., the lowest erroneous
detection of trends). These two methods are complementary in three aspects.
First, SCI is independent of the age/size trend, whereas RCS depends on a
‘strong’ ontogenetic signal and may be less reliable when this signal is lacking.
Second, the sensitivity of SCI depends of large sample sizes, as individuals
(and not growth measurements) are the units of analysis. On the other hand,
sensitivity of RCS is generally high as the individual ring measurements are the
units of analysis. Thus, RCS is more suitable to detect weak growth trends and
more suitable when sample sizes are relatively small. Third, the higher reliability
is an important asset of SCI and - combined with its somewhat lower sensitivity
— it makes SCI a high-quality, conservative method that can be used to verify the
robustness of trends detected using RCS.

Detecting trends in tree-growth is challenging, whether one deals with
growth data derived from permanent plot studies or from tree-ring analysis
(Bowman etal., 2013). For tree-ring data, both from temperate, boreal and tropical
regions, specific limitations exist that need to be taken into account. First, many
tree species show persistent temporal growth differences, i.e., fast growing
individuals stay fast growers in time (e.g., Brienen et al., 2006)2006. We believe
that especially the RCS is sensitive to these growth differences. These differences
lead to strong variation in diameter-age relationships that disproportionally
affect the regional curve and therefore influence trend detection. Similarly,
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shade-tolerant species and species showing periods of growth suppression (e.g.,
slow growth due to overshadowing) show periods of low or high growth over
multiple years. To minimize the effect of these persistent growth differences
on the regional curve, we recommend calculating RCS using small cumulative
diameter classes (e.g., 1 cm) instead of age (cf. Bontemps & Esper, 2011).

Second, biases due to sampling strategies can potentially induce growth
trends over time (Brienen et al., 2012a; Nehrbass-Ahles et al., 2014). For instance,
growth increases may be detected if slow-growing individuals within a population
live longer, i.e., the ‘slow-grower survivorship’ bias (cf. Brienen et al., 20122; Table
4.2); but see Ireland et al. (2014). These slow-growing individuals will then be
overrepresented in the more ancient portion of the dataset, leading to apparent
growth increases over time. Irrespective of the GDM used, tree-ring series should
be collected according to the population structure to avoid such sampling biases as
much as possible (e.g., Vlam et al., 2014a). Furthermore, we stress the importance
of sampling near permanent sample plots and weather stations with long-term,
high quality data (cf. Wang et al., 2006; Clark & Clark, 2011), to provide critical
contextual information on the sample site and conditions (Bowman et al., 2013).

Finally, detecting trends using tree-ring analysis requires working with
large sample sizes (~100 trees or more per species). Large samples are needed
to increase trend detection power and to obtain ‘representative’ subsets of the
population (e.g., for a ‘representative’ regional curve in RCS). Also, to avoid
local or regional effects on trends, sampling should preferably occur over large
geographical scales (e.g., Esper et al., 2012; Villalba et al., 2012). In the tropics,
however, acquiring and measuring large number of trees is challenging, due
to low species abundance of individuals and the difficulties of working with
tropical tree rings (Groenendijk et al., 2014). Collecting multiple species and
simultaneously analysing their growth trends (e.g., with mixed effects models)
can be applied to increase the statistical power of the analysis (e.g., Kint et
al., 2012; Lara et al., 2013). Such combined analyses are particularly powerful
if sampling follows a standardized strategy (cf. Nehrbass-Ahles et al., 2014). A
standardized sampling and analysis protocol would allow for a meta-analysis
of tree-ring studies worldwide, which is critical to assess the effects of global
environmental changes on tree growth and forest dynamics.

To accurately identify long-term growth trends when trends using
tree-ring analysis, the best approach is probably to apply several methods
simultaneously. This approach would be especially strong if combined with
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simulated tree-ring series that take sample sizes into account and that mimic the
variance in tree-growth. Such integrative approaches are essential to determine
whether detected growth trends really occur and should be extended to include
more species, from boreal, temperate and tropical regions.
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Supporting information Chapter 4
Appendix A - Climate-growth relations

We examined climate-growth relations between the chronology constructed for
Melia azedarach and station or modelled climate data, using standard correlation
analysis (cf. Vlam et al. 2014). We first correlated tree-ring indices to monthly
variation in climatic data of the phenological year: beginning at the start of
rainy season (pervious calendar year May) until the end of the rainy season
(current year October). Additionally, we correlated ring indices to averages of
climatic variables subdivided in different ‘climatic’ periods according to rainfall
patterns. These periods consisted of the entire phenological year (November
until October), rainy season (May until October) and dry season (November
until April; Bunyavejchewin et al. 2009), transition periods between previous
rainy to current dry season (October until December previous year), the centre
of the current dry season (January until March), current dry to rainy season
(April until June) and the centre of the rainy season (July until September). We
used linear regression modelling to determine the Pearson correlation between
the yearly ring-width indices and the above stated periods of climate variables
(Supplementary Table 4.1). All climate variables were detrended with a 15-year
spline function in R (dpIR packages, version 1.5.6) to avoid the inclusion of long-
term trends in climate data.

To determine which climatic variables explain most short-term variation
of the chronology, we performed a stepwise forward multiple regression analysis
in SPSS (version 16) between tree-ring indices and the detrended climate
variables. We tested the model for multi-collinearity in SPSS and analysed
its strength using Akaike Information Criterion and Bayesian Information
Criterion in R, using R Commander (Fox 2005). Model statistics and coefficients
presented in Tables S2 and S3.
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Supplementary Table 4.1. Overview of the monthly mean climatological data used in this study. Provided
are the available years, origin of the data set and the distance to the study site. A linear regression analysis
was performed to detect significant long-term trends in different climate variables over time.

Climate Available Origin of the data Distanceto Month or period with a
variable years HuaiKha significantlinear trend
Khaeng in time (pearson’s r; 1960
- recent available year)
Precipitation 1911-2011  Climate Station Nakhon Sawan 107 km None
(N 15.80 E 100.20)
1901-2009  CRU TS3.1 climate model okm None
(N 15.5-16.0 E 99.0-99.5)
Mean 1949-2011  Climate Station Nakhon Sawan 107 km Oct (0.30), Oct-Dec
temperature (N 15.80 E 100.20) (0.29)
1901-2009 CRU TS3.1 climate model okm Jan (0.29), Oct (0.35),
(N 15.5-16.0 E 99.0-99.5) Oct-Dec (0.29)
Min 1901-2009 CRU TS3.1 climate model okm Jan (0.28), Mar (0.34),
temperature (N 15.5-16.0 E 99.0-99.5) Jan-Mar (0.38),
dry season (0.31)
Max 1901-2009 CRU TS3.1 climate model okm Sep (0.28), Oct (0.37)
temperature (N 15.5-16.0 E 99.0-99.5)
Cloud cover  1901-2009 CRU TS3.1 climate model okm Mar (0.42), May (0.28),
(N 15.5-16.0 E 99.0-99.5) Jun (0.35), Jul (0.30),
Jan-Mar (0.30), Apr-Jun
(0.36)
Palmer 1870-2005 UCAR Palmer Drought Severity okm Jan (-0.35), Feb (-0.34),
drought Index Aug (-0.35),
severity index (N 15.0-17.5 E 97.5-100.0) Sep (-0.34), Oct (-0.41),
(PDSI) Nov (-0.34),
Dec (-0.35), Jan-Mar
(-0.32), Jul-Sep (-0.32),
Oct-Dec (-0.37), rainy
season (-0.34),
dry season (-0.32),
phenological year (-0.37)
ENSO: 1882-2012  Global climate index Global None
Nifo 3.4
sea surface
temperature
anomalies
Relative 1973-2003  HadCRUH specific humidity o km 1960 not available
humidity model
(N 15.0-20.0 E 95.0-100.0)
Solar 1978-2012  Global climate index Global 1960 not available
irradiance
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Supplementary Table 4.2. Model summary for the climate-growth multiple regression.

Model R R Square Adjusted R Std. Error of
Square the Estimate

[Cloud cover rainy season] 0.626 0.392, 0.378 0.1549793

[Cloud cover rainy season] + 0.703 0.495 0.472 0.142.8270

[Temperature min October-

November-December]

[Cloud cover rainy season] + 0.740 0.548 0.516 0.1367273

[Temperature min October-
November-December] +
[Precipitation dry season]

Supplementary Table 4.3. Collinearity statistics multiple regression for climate-growth analysis.

Model Unstandardised Standardised t Sig. Collinearity
coefficients Coefficients statistics
B Std.Error Beta Tolerance VIF
[Constant] -1.865 1.077 -1.731 0.091
[Cloud cover rainy  4.868 0.889 0.580 5.477 0.000  0.938 1.066
season]
[Temperature min ~ -2.111 0.643 -0.338 -3.283  0.002  0.993 1.007
October-November-
December]
[Precipitation dry 0.095 0.042. 0.238 2.239 0.030 0.934 1.071

season]
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Appendix B - Growth series simulations

Tree-ring simulations were performed in Matlab v8.1 using a loop-structure in
which every year 300 individuals were recruited over a period of 108 years (from
1901 to 2009). For each recruiting individual, growth in basal area was simulated
and annually tracked until the tree died (random annual mortality chance of
1%). Each tree started with an initial basal area of <0.1 cm? (i.e. 1cm diameter)
and a cambial age of 1 year. Modelled annual basal area growth was generated
to mimic the growth of Melia. The model consisted of four main factors: (1) the
ontogenetic curve, (2) climate-growth relations, (3) autocorrelation in growth
and (4) a stochastic growth factor.

(1) The equation describing the ontogenetic curve was computed by
fitting different non-linear functions (cf. Zeide 1993) to both the mean basal
area increment and ring-width increment of Melia aligned to cambial age. We
then choose the best model (highest R?) to describe the ontogenetic trend of the
modelled trees. The following Korf-model, fitted on mean basal area increment,
showed the best-fit (R?=0.93) and was therefore used:

where BAlont is the basal area increment according to the ontogeny at
annual interval t. Calibration parameter are presented by a, b and c.

(2) We used the same climate-growth relationships in the modelled
trees as found for Melia in the multiple regression analysis from Appendix A.
The following climate-growth model was used (R?= 0.55; Equation 2):

where BAIclim is the growth determined by the cloud cover in the rainy
season (CC ), mean minimum temperature in October to December (TMi,, )
and the precipitation in the dry season (P,). To simulate climatic variation in the
model tree, we used detrended climatic data as input. Data were detrended to
avoid any trends in the simulations other the imposed trends.

(3) Autocorrelation was included to simulate persistent differences
between slow and fast growing individuals over time (e.g., Brienen et al. 2006).

We included autocorrelation by adjusting annual growth for the mean growth in
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previous years. Growth rates for each year were adjusted using the mean annual
growth for the period t to t — n, in which t is the current year and n is the number
of years used to cover autocorrelation (we used n =15 years).

(4) Stochastic variation was included to mimic variation found in tree
growth not caused by climate, autocorrelation or ontogenetic effects (i.e., caused
by canopy dynamics, soil conditions, etc.). This factor was generated randomly,
using a normal distribution.

Finally, variance in initial growth was increased to better mimic the
variation in juvenile growth of Melia. For this purpose, a “pre-loop” was added,
running before the creation of initial growth values, to assign variation in initial
growth values to individual growth curves.

The stochastic factor sometimes created negative growth values for
individual trees. In the case of negative growth, a tree was assigned a new, small
positive growth value (normally distributed with p = 0.25, 0 =1) to allow for non-
fatal slow growth. If the newly generated growth value was again negative, the
simulation for that individual was terminated. The final ensemble of the model
used a simple additive function for all factors.

Input parameters and weighing factors were iteratively calibrated to
ensure that modelled growth showed mean basal area growth and standard
deviations similar to Melia’s. After each simulation, we compared the
distribution, means and standard deviations of growth rates between tree-
ring simulations and the data for Melia. In the final model, mean growth rates
and standard deviation showed similar patterns to Melia’s in both cambial age
and calendar year arrangements. For instance, mean and standard deviation
of the modelled trees till a cambial age of 45 years was almost equal to Melia’s
odd = 59-7; mean =59.2; STD =30.9; STD =34.1).

(mean sample model —
Finally, different scenarios were simulated by introducing linear

sample
negative and positive trends to the base model (no trend). Trends were added
by multiplying the model output by an annual direction coefficient of +1.002 (i.e.
a 2% growth increase/decrease per decade) and an annual coefficient of +1.006
(i.e. a 6% growth increase/decrease). These growth changes are within range of
changes found in tropical forests (Lewis et al. 2009). The Matlab code is available
on request.
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Appendix C: Accuracy and consistency of trend
detection

The accuracy of a method represents how well the strength of the imposed
trends is reflected in the detected trend (i.e., an imposed growth trend of 6%
per decade translated to a detected trend of 6% per decade). We calculated the
(relative) slope of the detected trends by the different GDMs and in Figure 4.5
assessed whether they coincided with the imposed trends. In Supplementary
Table 4.5 we present the average of the slopes detected by each GDM in each
growth trend scenario.

Supplementary Table 4.4: Average accuracy of the four growth-trend detection methods. Averages
presented are average of all slopes detected for the ten repetitions of 100 random selections of 100 trees.

Decrease 6% Decrease 2% No trend Increase 2% Increase 6%
CD -0.8% 0.2% 0.3% 0.3% 0.3%
BAC -9.2% -2.2% 0.0% 1.6% 4.5%
RCS -5.0% -1.0% 0.0% 0.8% 2.0%
SCI -11.2% -3.5% -1.3% 0.4% 2.8%

We assessed consistency in trend detection between the different GDMs
on our modelled data as applied on Melia. For this purpose, we applied each GDM
to a ‘fixed’ random selection of trees for all methods (i.e., the same selection of
trees per GDM) in each growth-trend scenario. We compared whether trends
were detected similarly on these corresponding random datasets and whether
the slopes detected by the different GDMs were correlated. This correlation was
calculated between the slopes detected for each method, with the slopes detected
by RCS (used as the reference method).

On average, the slopes detected by BAC correlated well with the slopes
detected by RCS (average R* = 0.575; Supplementary Table 4.6) whereas the
slopes detected by SCI correlated (as expected) less strongly (average R*=0.244).
As CD detected nearly no trends, its slopes showed no correlation with the RCS’s
(average R*=0.009). For an overview of the correlations is provided in Figure S1
and a schematic overview of whether trends were detected by each method in

the 100 random tree selections in figure S2.
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Supplementary Table 4.5: Average consistency of the trend detection methods. Calculated as the

R-squared between all slopes detected by the methods CD, BAC and SCI with the slopes detected by RCS.
See also Figure S1 below.

Decrease 6% Decrease2%  Notrend Increase2% Increase 6% Average

CD 0.024 0.015 0.005 0.017 0.050 0.022,
BAC 0.657 0.651 0.701 0.687 0.694 0.678
SCI 0.208 0.207 0.198 0.204 0.141 0.192,

CD = conservative detrending; BAC = basal area correction; RCS = regional curve standardisation;
SCI = size class isolation

Figure S1: Slopes detected by CD, BAC and SCI against the slopes detected by RCS (as a reference) for
each of the simulated growth-trend scenarios (6% and 2% growth decreases, no trend and 2% and 6%
growth increases). Correlations between slopes are provided including R*-values.
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Appendix E - Additional analysis for BAC

The C-method standardization is an adaptation of BAC that further ‘detrends’
the growth rates expressed in basal area. This method assumes that the age-
trend in growth is mostly caused by the distribution of a fairly constant basal area
increment over an expanding surface. Thus, the C-method standardizes growth
by calculating the ratio of tree growth (ring-width) divided by the expected
width for a tree-size. The expected width is calculated from the expected basal-
area growth (which is assumed to be constant) for that size. We performed the
C-method standardization in R, following Biondi and Qeadan (2008) using the
cms function in the dplR package (Bunn et al. 2008).

The method detected either no-trends or negative growth trends in all
simulations. However, C-method did never detect growth increases, even for the
simulations with the highest imposed positive growth trends (Supplementary
Table 4.7 and Figure S3). This detection of only negative trends may be induced
because of the assumption that ring widths show very rapid decreases in the early
years of a tree. However, for most (simulated) curves, this reduction is much
weaker than assumed/expected by the C-curves (Figure S4). Especially for the
juvenile years in large/old trees, the fit of the C-curves is weak and initial growth
rates are overestimated (Figure S4). These overestimations in the juvenile years of
large trees probably resulted in lower residuals in the recent past than further back
in time, thus inducing negative trends to be detected. This weak fit of the curves by
the C-method was also noted by Biondi and Qeadan (2008). We believe that these
negative trends are induced by the fact that we also include young/small trees
in the analysis. The (expected basal area) curves fitted by the C-method do not
correctly account for the age trend in young/small trees — overestimating actual
growth in the more resent past — resulting in lower residuals for young trees (and
thus relatively more “low residuals” in the recent past than further back in time).

Supplementary Table 4.7. Results for the C-method standardization for the five growth-trend simulations
(no trend; 2% and 6% imposed growth increases; and 2% and 6% decreases). Provided are sensitivity
(percentage of correctly detected imposed growth trend), reliability (100% minus the amount of
erroneously detected growth trends) and the average detected trends per decade (i.e., average of slopes
detected by linear models fitted on 100 simulations per imposed trend).

Decrease 6%  Decrease6%  Notrend Increase 6% Increase 6%
Sensitivity 100% 100% 0% 0% 0%
Reliability 100% 100% 0% 1% 13%
Trend (per decade) -13.0% -7.4% -6.0% -4.5% -2.8%
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Figure S2: C-curves (cf. Biondi & Qeadan, 2008) fitted through random subsets of 100 simulated growth
series and the resulting chronologies for two different growth-trend scenarios: growth increases and
decreases of 6%. Both chronologies show negative trends over time.
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Figure S3: Examples of the fitted C-curves (cf. Biondi & Qeadan, 2008) through four simulated growth
series with differing ages, for two different growth-trend scenarios: growth increases and decreases of
6%. Both chronologies show negative trends over time.
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Abstract

Theimportantrole of tropical forestsin the global carbon cycle makesitimperative
to assess changes in their carbon dynamics when accurately projecting future
climate change. Forest monitoring studies conducted over the past decades
have found contrasting evidence for both increasing and decreasing growth
rates of tropical forest. These changes are often ascribed to anthropogenic
climatic changes and suggest that tropical forests acted either as carbon sinks or
sources in the recent past. The limited length of these studies, however, restrains
analyses to decadal scales and it is still unclear whether growth changes occurred
over longer time scales. Furthermore, these studies often focussed on plot-level
changes and rarely on the level of species. These community-wide dynamics
are the aggregate result of species-specific responses to changes in climatic
conditions or disturbances, but virtually nothing is known about species-
level responses so far. Here we analyse species-specific growth changes on a
centennial scale, using growth data obtained from tree-ring analysis for 13 tree
species (~1300 trees), from three sites distributed across the tropics. We used an
established and a new growth trend detection method and explicitly assessed the
influence of biases on the detection of trends. In addition, we assessed whether
aggregated trends were present within and across the study sites. We found
evidence for decreasing growth rates over time for 10 species, whereas increases
were noted for two species and one showed no trend. Additionally, we found
evidence for weak aggregated growth decreases in the species from Thailand
and when analysing all sites simultaneously. These growth reductions suggest
worsening growth conditions in tropical forests, possibly due to temperature
increases. However, other causes cannot be excluded, such as recovery from
large-scale disturbances or changing forest dynamics. Our findings contrast the
growth patterns that would be expected if increased CO, would stimulate tree
growth. This suggests that the commonly assumed growth increases of tropical
forests may be incorrect, which could lead to erroneous predictions of carbon
dynamics in tropical forest under climate change.
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5.1 Introduction

Tropical forests form an important element of the global carbon cycle. While
covering only 7% of the Earth’s terrestrial surface, they are responsible for one
third of the terrestrial net primary production and store approximately 40% of
all carbon in terrestrial vegetation (Houghton, 2005). Due to their high storage
and processing of carbon, changes in net uptake or loss of carbon has large
implications for the global carbon cycle (Pan et al., 2011). Shifts in climate, in
atmospheric CO, levels or in nutrient depositions, may influence growth and
mortality rates of trees and alter the dynamics of tropical forests (Lewis et al.,
2009a; Alvarez-Clare et al., 2013). For instance, decreases in growth rates have
been interpreted to reflect the limiting effect of increased temperature on
growth (Feeley et al., 2007), while growth increases interpreted to reflect the
stimulating effect of increasing CO, concentrations (e.g., Phillips et al., 2008;
Lewis et al., 2009a).

Monitoring studies of permanent sample plots (PSP) have provided
valuable insights in the growth and dynamics of tropical forests. Evidence on the
climate sensitivity of forest growth in these plots (Clark et al., 2010) has been used
to explain changes in growth rates, dynamics and biomass accumulation (e.g.,
Phillips et al., 2008; Murphy et al., 2013). Yet, community-level responses consist of
the aggregate reaction of different species — with different life strategies — which
will react differently to changing conditions. Itis therefore essential to understand
these species-level responses when assessing changes in tropical forests. However,
the high biodiversity of tropical forests — combined with the usually small size of
plots — has restricted analyses of changes to the community (Phillips et al., 2008;
Lewis et al., 2009b) or genus level (Laurance et al., 2004b). Studies on the responses
of individual species are sparse in the tropics, with only one PSP study analysing
growth changes at species level (Feeley et al., 2007). This study reported decreasing
growth rates for most species studied, suggesting a reduction in the potential of
forests to sequester carbon from the atmosphere (Feeley et al., 2007).

Climatic changes are often suggested as the drivers of detected changes
in tropical forest (Feeley et al., 2007; Lewis et al., 2009a). However, the same
changes could also appear when forests recover from (large-scale) disturbances
(Muller-Landau, 2009; Chambers et al., 2013). Although PSP studies have provided
valuable insights on changes in tropical forests, these studies are limited by their
relative short duration compared to the time-span of the changes they want to
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assess: climatic changes or recovery from disturbances take place at the scale
of multiple decades up to centuries. To improve the understanding of tropical
forests’ responses to climate change, there is a need for long-term approaches
analysing growth changes. These long-term approaches are needed, as growth
trends detected in plot studies may simply reflect decadal fluctuations in climatic
factors (e.g., temperature; Feeley ef al., 2007) or be a result of the relatively small
size of most plots (Chambers et al., 2013).

Tree-ring analysis offers the opportunity to extend insights on growth
changes of individual tree species to the scale of multiple decades to centuries.
In temperate regions, tree-ring analysis has widely been used to assess effects of
climate on tree growth and to analyse historical growth changes (e.g., Esper et
al., 2012; Villalba et al., 2012). In the tropics, tree-ring analysis has only recently
been applied to analyse changes in growth (Rozendaal et al., 2010a; Nock et al.,
2011). Tree-ring analysis usually provides growth data that goes back to the
establishment of trees and allows for the analysis of growth changes at species
level. It thus has a great potential to assess historical growth changes and to
improve the understanding of how tropical forests react to climate change
(Bowman et al., 2013; Zuidema et al., 2013).

Here, we use tree-ring analysis to assess long-term growth changes in
tropical forests. We sampled 1262 trees of 13 species from three tropical forests
sites across the tropics: in Bolivia, Cameroon and Thailand. We addressed
the following questions: (i) are growth rates changing over time for our study
species?; (ii) is the detection of growth changes affected by sampling biases?; and
(ii1) do species from the same site an across sites show similar growth changes?

Growth data for the 13 species were obtained from tree-ring analysis
and growth trends were analysed for the last ~150 years on the level of species,
site and for all sites combined. In the analysis of trends, we explicitly evaluated
possible effects of biases inherent to working with tree-ring data (Brienen et al.,
20122; Nehrbass-Ahles et al., 2014). Trend detection may be affected by the choice
of method to disentangle inherent age/size trends present in tree growth from
long-term trends (CHAPTER 4). Therefore, we combine an established and a new
trend-detection method to ensure trend detection is robust. Additionally, we
explicitly test for the presence of two important biases in our data — the juvenile
selection’ bias (cf. Rozendaal et al., 2010a) and the ‘pre-death slow growth’ bias
(cf. Brienen et al., 2012a) — to evaluate whether and how strongly these biases
may have affected our results.
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5.2 Material and Methods

Study areas and sample collection.

We sampled trees from undisturbed tropical forests located in the three
continents: South America (in Bolivia), Africa (in Cameroon) and Southeast
Asia (in Thailand). In Bolivia, trees were collected in the ‘La Chonta’ logging
concession, situated at15.84° S, 62.85° W, ca. 300 km northeast of Santa Cruz de
la Sierra. The vegetation at La Chonta consists of semi-deciduous moist forest,
on the transition between dry-forest (Chiquitano) and moist Amazonian
forests (Pefia-Claros et al., 2008). Precipitation in the region is unimodal, with
an annual average of 1580 mm and a four month dry season (with <100 mm
rainfall) from May to September. In Cameroon, samples were collected inside
the Forest Management Unit 11.001 of the logging company Transformation
REEF Cameroon (TRC, 2008). The area is situated at 5.23° N, 9.10° E, adjacent
to the Korup National park in the Southwest region. Vegetation consists of
semi-deciduous lowland rainforest of the Guineo-Congolian type (Kenfack et
al., 2006). Precipitation is also unimodal, with average annual precipitation
around 410omm (Nchanji & Plumptre, 2003) and a three-month dry season
from December to February. In Thailand, the study site was situated in the
Huai Kha Khaeng Wildlife Sanctuary (HKK), situated at 15.60° N 99.20° E,
around 250 km northwest of Bangkok. The vegetation in HKK consists of
semi-deciduous moist forest (Bunyavejchewin et al., 2009). Precipitation is
unimodal, with an annual average of 1473 mm and a 4-6 months dry season
from November to April.

At each study site, we sampled trees of four to five species (Figure 5.1
and Table 5.1), selected based on the possession of clear annual growth rings
and on their local abundance (i.e., relatively common species). Trees were
sampled using a stratified random approach inside large (144-297 ha) areas of
undisturbed forest, i.e., where no previous logging activities had taken place
and not showing sign of major anthropogenic disturbances. We worked in
undisturbed forests to avoid any effects of disturbances on the detection of
trends. At each large study area, we created a virtual grid of several 300 x 300
m cells and at random coordinates inside each cell, we installed circular plots of
ca. 1 ha (radius of ~56m) that were located using a GPS device (Garmin GPSmap
60CSx). Inside these plots, all trees >5 cm diameter at breast height (dbh, at 130
cm height) of our target species were sampled. We installed 16-25 plots per study

157



Chapter s

area, distributed across the entire area, to ensure sample sizes of around 100
trees per species (Table 5.1). We also collected samples outside the circular plots
for some of the species, to include some large (and presumably old) trees or to
ensure sample sizes were reached. For two species in Cameroon — Daniellia ogea
and Terminalia ivorensis — we also sampled trees outside the large study area to
increase sample sizes.

In Bolivia and Cameroon, samples were collected inside logging
concessions, allowing for the collection of stem discs for ~30% of the sampled
trees. The remaining samples in Bolivia and Cameroon and all samples from
Thailand were collected using 5 mm diameter increment borers of different
lengths (Suunto, Finland and Haglof, Sweden) in three to four directions per
tree. All samples were taken at 1 m height or above buttresses or anomalies when

present.

Figure 5.1. Location of study areas and ring structures for the species studied. Wood samples were
collected in wet tropical forests (precipitation >1500 mm yr”) in three locations (red stars): in Bolivia at the
La Chonta forest concession; in Cameroon in the TRC 11.001 logging concession, adjacent to Korup
National park; and in Thailand in the Huai Kha Khaeng Wildlife Sanctuary. Growth-ring boundaries in
the wood are indicated with white triangles.

Ring measurements

Prior to measurements, samples were air dried and either cut or polished to
increase ring-boundary visibility. Ring-widths were measured using a LINTAB
6 measuring table and TSAPWin software (Rinntech, Germany) or using
high-resolution scans (1600-2400 dpi) and the WinDendro software (Regent
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Instruments, Canada). Ring widths were measured in three to four different
directions for each tree following standard dendrochronological approaches
(for more details see Groenendijk et al., 2014; Vlam et al., 2014b). Finally, tree-
ring width measurements were converted to cross-sectional area growth (basal
area increment, BAI) as BAI better represents a tree’s biomass growth.

The annual nature of ring formation has been previously demonstrated
for the Bolivian species by Lopez et al. (2012). For the Cameroonian species,
annuality of ring formation for T. ivorensis was established by Détienne et al. (1998).
For the remaining three species, annual ring formation was assessed through
radio-carbon dating (Groenendijk et al., 2014). Two of the species — B. eurycoma
and D. ogea — showed high-quality dating, while the third — B. cynometroides —
showed some discrepancies in dating that lead to tree-age underestimations of
about 10%. For the species from Thailand the annual character of ring formation
was proven by Baker et al. (2005). Furthermore, for the samples used here, Vlam et
al. (2014b) was able to confirm annuality by building chronologies and analysing
climate-growth relations (Table 5.1).

We checked the quality and dating of the tree-ring measurements by
crossdating the measured ring series. Crossdating is standard practice in tree-
ring analysis and consists of matching the patterns of variation in ring-widths
between different series: within trees (i.e. among different radii) and among
trees (i.e., among individuals). Crossdating measurements within a tree ensures
the same (amount of) rings are measured between the different radii of an
individual and helps in identifying wedging rings (rings that merge on certain
parts of the circumference of the tree) and ‘false’ ring structures (intra-annual
growth variations). For nearly all 1262 measured trees, internal crossdating
proved successful, i.e., variation in ring-width for the different radii within a
tree matched well, both visually and statistically.

Crossdating among individuals proved more challenging and we were
only able to build crossdating for four Thai species (Vlam et al., 2014b) but
not for the Bolivian and Cameroonian species (Groenendijk et al., 2014). We
acknowledge that without chronologies, we lack proof that dating of all rings
was absolute. However, the design of this study aimed at detecting growth
changes and not at establishing chronologies. Although unavoidable, we
assume that possible shifts in calendar year values due to dating errors do not
strongly affect growth-trend detection, nor induce the detection of erroneous
trends. Thus, we believe that the quality of our measurements is still high
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enough to address our (ecological) research questions, as lacking chronologies
does not imply that dating accuracy is low (cf. Fichtler et al., 2003; Groenendijk
etal., 2014).

Table 5.1. Characteristics of the 13 species studied. Included are family, shade-tolerance guild (ST =
shade-tolerant; PST = partial shade-tolerant; LLP =long-lived pioneer, definitions cf. Poorter et al. (2006);
and leaf phenology (E, evergreen; D = deciduous; BD = brevi-deciduous).

County Species Family Guild* #trees Leaf Annual rings

phenology*

Bolivia Ampelocera ruizii Ulmaceae ST 91 E Lopez et al. (2012)
Cariniana Lecythidaceae ~ PST 102 D Lopez et al. (2012)
ianeirensis
Hura crepitans Euphorbiaceae PST 95 D Lopez et al. (2012)
Sweetia fruticosa Fabaceae LLP 105 BD Brienen and

Zuidema (2003)

Cameroon Brachystegia Fabaceae PST 122 BD Groenendijk et al.
cynometroides (2014)
Brachystegia Fabaceae PST 124 BD Groenendijk et al.
eurycoma (2014)

Daniellia ogea Fabaceae LLP 104 BD Groenendijk et al.
(2014)

Terminalia ivorensis Combretaceae LLP 62 D Détienne et al.
(1998)

Thailand  Afzelia xylocarpa Fabaceae LLP 100 D Vlam et al. (2014b)
Chukrasia tabularis  Meliaceae PST 104 BD Vlam et al. (2014b)
Melia azedarach Meliaceae LLP 89 D Vlam et al. (2014b)
Neolitsea obtusifolia  Lauraceae ST 104 E Vlam et al. (2014b)

Toona ciliata Meliaceae LLP 61 D Vlam et al. (2014b)

'Ecological Guilds: Bolivia (Pefia-Claros et al., 2008), Cameroon (Hawthorne, 1995), Thailand (Baker et al.,
2005); definitions cf. Poorter et al. (2006)

*Phenology: Bolivia (Mostacedo et al., 2003), Cameroon (Hawthorne, 1995; Lemmens et al., 2012), Thailand
(Williams et al., 2008)

*Ring boundary definition cf. Worbes (1995)

Ontogenetic vs. long-term trends in growth

To detect long-term growth changes from tree rings requires disentangling
age/size dependent trends in growth from long-term growth changes. Several
methods have been developed for this purpose. However, the detection power
and reliability of these methods vary (CHAPTER 4) and method choice affects
the trend detection. Here we applied the well-established regional curve
standardisation (RCS) together with the less common size class isolation (SCI)
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method. The RCS was shown to have a high detection power and to be reliable
when detecting long-term growth trends (CHAPTER 4), whereas the SCI is
a more conservative (i.e., less sensitive) when detecting trends, but analyses
trends more directly, using raw growth rates. These methods complement each
other and combining them provides the most robust results when assessing
growth changes (CHAPTER 4).

In the RCS, an average ontogenetic growth trend for a species (the
‘regional curve’, dashed line under ‘Age/size correction’; Figure 5.2) is calculated
and individual tree-ring series are divided by this average curve (Briffa et al.,
1992; Esper et al., 2003)1992; Esper et al., 2003. The regional curve is usually
calculated by aligning ring-widths of all individuals to cambial age (i.e., age from
the pith) and calculating the average expected growth for each age. For shade-
tolerant species or for species showing periods of growth suppression (e.g., slow
growth due to overshadowing) size rather than age is often a better indicator for
an individual’s ontogenetic stage (King et al., 2005; Nock et al., 2011). Therefore
we calculated the regional curve using small diameter classes instead of age (the
‘regional size curve’; cf. Bontemps & Esper, 2011). We used diameter classes of
0.5 cm and calculated average growth rates of all individuals in each class (>10
individuals per class). We then fitted four different non-linear functions to
these average growth rates per size class: Chapman-Richards, Hossfeld, Korf,
and Weibull (cf. Zeide, 1993). The function that best described the size - BAI
relationship for each species (i.e., with the highest R?) was chosen to represent
the regional curve. We then calculated residual growth rates by dividing each
growth-year by the expected growth for its size (as calculated from the regional
curve). Finally, to ensure residuals were calculated for the same diameter classes
as used for the regional curve, we averaged (annual) residual growth rates for
each 0.5 cm diameter class.

In the Size Class Isolation, growth rates are compared inside the same
size classes for extant small (and thus young) and extant large (thus old) trees
(cf. Landis & Peart, 2005; Rozendaal et al., 2010a), i.e., growth rates of small
trees are compared with those of large trees when they were small (Figure
5.2 and CHAPTER 4). The SCI assumes that the size dependent growth-trend
does not affect the detection of long-term growth trends if analysed within
fixed size classes. We computed the SCI using 4-cm diameter classes and
calculated growth rates as an average BAI of five rings: the year at which a
tree reaches the diameter class (e.g., 4, 8, 12 cm; Figure 5.2) and the two rings
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prior and after that year. Trends in the SCI are calculated over raw growth
data (in BAI) making this method independent of decisions made during
curve fitting procedures. However, due to its lower sample sizes (the unit of
measurement are individual trees) the power to detect trends using the SCI is
lower than the RCS’ (CHAPTER 4). For the sake of simplicity, in the main text
we will focus mostly on the RCS, providing more extensive results for SCI in
the Supplementary materials.

Figure 5.2. Schematic overview of the application of the regional curve standardisation (RCS) and size
class isolation (SCI) to disentangle age/size from long-term trends in tree growth. Left panels indicate
how the age/size trend (i.e., the ontogenetic signal) is disentangled from long-term growth changes: for
the RCS, by dividing individual growth curves by the average age/size trend (dashed line); for SCI, by
analysing trends within size-classes (e.g., in class 4cm, black bar). The second column illustrates how
trends are computed: on residual growth rates for the RCS and on raw rates for the SCI. See Methods
section for more detailed explanation of the methods.

Analysis of species-level growth trends

We tested for long-term growth trends for each species using the RCS and
the SCI. In the RCS trends were analysed by computing Pearson’s correlation
coefficients (significance level p < 0.05) between the residual growth data and
calendar year (‘Trend analysis’; Figure 5.2). In the SCI, for each species trends
were analysed for all size classes simultaneously using mixed-effect models,
including ‘calendar year’ as fixed factor and ‘size class’ as random factor. For all
analyses, we used the natural logarithm of the (raw) growth data to normalize
the data and stabilize variation. We tested the mixed-effect models with random
intercept and with random intercept and slope, and tested whether calendar
year had a significant effect on the model. For each test, the most parsimonious
model was chosen, i.e., the model yielding the lowest Aikaike’s Information
Criteria (AIC), and we computed estimated p-values.
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Assessing biases in trend detection

When analysing growth trends, it is imperative to account for several biases
(Brienen et al., 2012a; Nehrbass-Ahles et al., 2014; CHAPTER 4). Two biases may
have affected our results: the juvenile selection’ bias (Rozendaal et al., 2010a), and
the ‘pre-death slow growth’ bias (Brienen ef al., 2012a). Therefore we explicitly
evaluate whether these biases were present in our data.

The uvenile selection’ bias maylead to the detection of growth decreases
over time, or mask growth increases. This bias occurs if slow-growing juvenile
trees have a lower chance to reach maturity than fast growers. This lower survival
implies that the large canopy trees of today were relatively fast growing in the
past. Evidence for this bias has been found for temperate (Landis & Peart, 2005)
and tropical species (Rozendaal ef al., 2010a). We evaluated whether the juvenile
selection bias affected our results by analysing if slow growing juvenile trees
(<20 cm dbh) in the distant past were selectively ‘removed’ from our dataset.
For this purpose, we performed the equivalent of a quantile regression on the
25% slowest and fastest growing juvenile trees. The lower quantile represents
the slowest growers of a population and a negative trend in this quantile may
indicate that these individuals have selectively been removed from the population
further back in time (grey area, Figure 5.3). Such a negative trend may also be
induced by worsening growth condition in time, e.g., as induced by increases
in temperature. However, such worsening growth conditions would also lead
to changes in the growth potential of a species, thus on the quantile with the
fastest growers. By simultaneously analysing trends in both the slowest and
fastest growers, it is possible to assess the juvenile selection bias and disentangle
it from changing growth conditions. In the case of the juvenile selection bias,
the two quantiles will show a differential direction of trends, with the slowest
growers showing a negative growth trend while the fastest growers may show
either no or a positive trend (Figure 5.3). Additionally, in the case of a strong
external driver forcing growth changes, we expect to find congruent growth
trends in both quantiles: worsening growth conditions in time would lead to
negative trends (Figure 5.3), whereas improving growth conditions to growth
increases (Figure 5.3).

In short, the slowest growers in a population (i.e., the lower quantile)
can be used to assess the presence of a juvenile selection bias, while the fastest
growers provide information on changing growth conditions over time. We
performed the quantile regressions on the RCS data only, as it provides a higher
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detection power than the SCI after splitting up the data (i.e. larger sample sizes).
Foreach decade, we selected the 25% fastest and 25% slowest growing individuals
(in residual growth rates) and analysed the trends over the quantile growth data
(log transformed) using Pearson’s correlations.

Figure 5.3: Schematic overview of the approach to detect the juvenile selection bias using quantile
regressions. Juvenile selection occurs if fast-growing juvenile trees have a higher chance to reach maturity
than slow growers. Simultaneous analyses of trends in the slowest and fastest quantiles of juvenile growth
allows assessing the juvenile selection and disentangling it from changing growth conditions. In the case
of juvenile selection, the two quantiles will show a differential direction of trends, with the fastest growers
(green dots) showing either no or a positive trend in growth, while slowest growers (blue dots) will show
a negative growth trend (as slow growers are selectively removed from the data further back in time; grey
area). In the case of strong external drivers forcing growth changes (right panels), the quantiles will show
congruent growth trends. Solid black lines indicate significant trends and dashed lines non-significant.
Quantiles were calculated as the 25% fastest and slowest growers per decades.

The ‘pre-death slow growth’ bias (cf. Brienen et al., 2012a) may lead to the
detection of growth decreases over time or may mask positive trends. This bias
arises if growth reductions occur in the years preceding tree death (Wyckoff &
Clark, 2002; Chao et al., 2008). In this case, the most recent years in the tree-ring
data will include growth data from individuals that are dying (but still alive) and
that show reduced growth rates. In temperate forests, growth reductions prior
to death were found between 6 up to more than 12 years prior to a tree’s death
(Wyckoff & Clark, 2002). In the tropics however, it is unclear how long these
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growth reductions persist, as existing analyses do not cover more than 10 years
(e.g., Chaoetal., 2008; Ruger et al., 2011; van den Berg et al., 2012). We expect this
to play a role on only the last 15-20 years of growth. Therefore, to evaluate the
effect of the pre-death slow growth bias, we re-analysed trends after excluding
the last 15 years of growth. If negative trends detected in all data disappear or
become positive after the removal of the last 15 years, this indicates that the pre-
death slow growth bias may have influenced trend detection.

Growth trends within and across sites

If growth changes are driven by a common external factor, we expect that all
species of a site — or across sites — will show trends in the same direction. We
used linear mixed-effect models to analyse aggregated trends in growth for all
species from a site. In these models, we included ‘calendar year’ as fixed factor
and ‘species’ as random factor. For the analysis of aggregated trends for all sites,
we combined all data and analysed trends on a similar way as for the site-level
analysis, but nested all random factors further inside site. The natural logarithm
of residual or raw growth data was used, to normalize data and stabilize variation.
All linear mixed-effect models were tested with random intercept only, and with
random intercept and slope, and the most parsimonious model was chosen, i.e.,
the model yielding the lowest Aikaike’s Information Criteria (AIC). All analyses
were performed in R (version 3.0.2; R Core Team 2013), using the package NLME
(Pinheiro et al., 2009).

5.3 Results

Species specific trends
We assessed long-term growth changes in tropical forests at three levels: at
species level, site level and for all sites combined. In the species-level analysis
using RCS, 12 of the 13 species showed significant changes in (log transformed)
growth rates over time and one species (Afzelia xylocarpa) showed no changes
(Figure 5.4). Two of these 12 species showed significant growth increases,
whereas for 10 species growth rates decreased over time.

For the Bolivian species we found growth decreases for three species (A.
ruizii, C. ianeirensis, and S. fruticosa) and an increase for one (H. crepitans; Figure
5.4). The Cameroonian species showed similar trends: growth decreases in three
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species (B. eurycoma, B. cynometroides and T. ivorensis) and a growth increases for
one (D. ogea; Table 5.2). For the Thai species, growth decreases were found for
four species (C. tabularis, M. azedarach, N. obtusifolia, and T. ciliata) and no growth
change for one (4. xylocarpa). In Supplementary materials Supplementary figure
5.1 we show a similar analysis, but with trends computed on the raw residuals
(i.e., not transformed) using non-parametric tests (Spearman’s rho).

Detected trends using RCS ranged from significant to highly
significant (p-values from ~0.02 to < 0.001, Table 5.2) and the period over
which trends were assessed depended on the longevity of the species analysed
and ranged from ~70 years (for e.g., M. azedarach and A. ruizii) up to ~250 years
(e.g., for D. ogea, Table 5.2).

For the species level analysis with SCI, we applied a linear mixed-effect
model for each species with ‘calendar year’ as fixed and ‘diameter category’ as a
random factor. SCI showed similar trends as the RCS, but with a lower detection
power: trends detected for 8 instead of 10 species. Only for one species — A. ruizii
in Bolivia — did the detected trends not coincide: a growth decrease was found
using RCS and an increase using SCI (Supplementary table 5.1).

Analysis of biases

We assessed whether the juvenile selection bias affected the detection of trends
by analysing trends on the slowest and fastest growth quantiles for juvenile trees
(dbh <20 cm). For most species, trends in the quantiles were similar to the trends
found when analysing all growth data (Figure 5.5, Supplementary table 5.1),
indicating the juvenile selection bias does not affect the trends detected. The
only species that showed a possible effect of the juvenile selection bias was the
Thai species A. xylocarpa. For this species, the lower quantile showed a negative
trend, whereas trends were not significant in the upper quantile and in all data
(Supplementary table 5.2). This negative trend may indicate that slow growing
individuals were selectively removed from the dataset further back in time.
Additionally, for three species presenting growth reductions in the analysis of
all data — C. ianeirensis, T. ivorensis and T. ciliata — trends were not significant
anymore in the quantile analysis (Figure 5.5).
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Figure 5.4. Long-term trends in in growth for 13 species from three tropical sites, using the regional curve
standardisation. Trends computed with Pearson’s correlations between (log transformed) standardised
growth rates and against calendar year. Note the varying x-axis. Solid lines indicate significant trends in
the quantiles, dashed lines non-significant trends.
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Table 5.2. Long-term trends in residual growth rates for the 13 tree species. Residual growth calculated
using the regional curve standardisation (RCS) method. Significant trends marked in bold (red = growth
decreases, green = growth increases) and sample size (n) and period of analysis are also provided.

Studysite  Species Pearson’sryear’ Sample size Period of analysis
Bolivia Ampelocera ruizii -0.134%** 2304 1937-2010
Cariniana ianeirensis -0.033* 5202 1874-2010
Hura crepitans 0.049* 2725 1894-2010
Sweetia fruticosa -0.160°** 3463 1838-2010
Cameroon  Brachystegia cynometroides -0.2697* 8814 1864-2010
Brachystegia eurycoma -0.186"** 7761 1854-2010
Daniellia ogea 0.216*** 9693 1756-2010
Terminalia ivorensis -0.205™** 5601 1850-2010
Thailand  Afzelia xylocarpa -0.010 6427 1834-2010
Chukrasia tabularis -0.109*%% 4416 1897-2010
Melia azedarach -0.278™** 2619 1941-2010
Neolitsea obtusifolia -0.214**% 3989 1890-2010
Toona ciliata -0.081°** 2415 1915-2010

'RCS analysis: trends computed with Pearson’s correlations of (log transformed) standardised growth
rates against calendar year
Significance trends indicated as: * p < 0.05; ** p < 0.01; and *** p < 0.001)

To assess whether the ‘pre-death slow growth’ bias has influenced the
species-level results, we re-analysed all growth trends after removing the last
15 years of growth (i.e., on years prior to 1985). Removing these growth years
hardly affected the detected trends for most species (Supplementary figure 5.2,
Supplementary table 5.3). However, for two species trends disappeared, i.e.,
changed from significantly positive (in H. crepitans) or significantly negative (in
T. ciliata) to non-significant, while for another two species — S. fruticosa and M.
azedarach — trends changed from positive to negative (Supplementary figure 5.2,
Supplementary table 5.3).
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Figure 5.5. Quantile regression of growth trends for 13 tropical tree species from three tropical sites.
Trends computed on the 25% fastest (green dots) and 25% slowest growers (blue dots) to assess the effect
of juvenile selection bias (see Figure 5.3) using with Pearson’s correlations between growth rates and
calendar year. Solid lines indicate significant trends in the quantiles, dashed lines non-significant trends.

Aggregated growth trends per site

To identify whether aggregated growth trend were present per site, we analysed
trendsforallspeciesin each site simultaneously. In Bolivia, species-level increases
and decreases in growth were both detected. However, when simultaneously
analysing trends for all species, using both the RCS as the SCI, we found no
evidence for aggregated changes in growth rates for all species in the Bolivian
site (i.e., no significant ‘calendar year’ effect in the linear mixed-effect model).
Results for Cameroon were similar to the Bolivian results: although trends were
present at species level, no aggregated growth changes were detected among the
species using the both detection methods. For Thailand, in four of the five species
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we detected growth decreases. When analysing for aggregated trends for all Thai
the mixed-effect models using RCS data showed a weak growth decrease over
time (year effect = -0.0041, p = 0.033, n=19860; Table 5.3). Although significant (p
<0.05), the model that included the year effect only differed slightly from the no-
trend model in Akaike’s information criterion (AAIC =1.83) and this difference
is thus inconclusive (cf. Burnham et al., 2011; Murtaugh, 2014). The mixed-effect
models using SCI did not detect significant trends when analysing all species of
the Thai site simultaneously (Supplementary table 5.2).

Growth trends across sites

To assess whether a common factor (e.g., increasing temperatures, or CO -
fertilisation) is driving growth changes over all three research sites, we analysed
growth changes for all species from all sites simultaneously. Using the linear
mixed-effect model for all sites, we found a weak reduction in growth over time
(year effect =-0.0027, p = 0.005, DF= 65415; Table 5.3).

In short, both growth increases and decreases were present at the
species-level, but on site level, consistent growth changes were only found for
the Thai study site. Additionally, we found evidence for a congruent growth
decrease across all species and sites. Again, the model including the year effect
differed slightly from the no-trend model (AAIC = 2.80), indicating again that
the detected trend was weak (cf. Burnham et al., 2011; Murtaugh, 2014). The
mixed-effect models using SCI analyse aggregated trends for all sites did not
detect significant trends (Supplementary table 5.2).

Table 5.3: Linear mixed-effect model results for trend analyses per site and for all sites combined. Trends
in growth were analysed on residual growth rates (from the regional curve standardisation) using mixed-
effect models, with ‘calendar year’ as fixed factor (Effect year). In the analysis per site, ‘species’ were
included as random effects. For the analysis for all sites, random effects were ‘species’ nested in ‘country’.
Growth data were log transformed to normalize data and stabilize variation. Also provided: degrees of
freedom (DF), AAIC, and period of analysis. Two-tailed significance indicated with: * p <0.05; ** p <0.01.

Study Intercept Effectyear DF AAIC effect  Period of
site (+ std error) year analysis

Bolivia -0.033 -0.0018 + 0.0014 13689 0.24 1838-2010
Cameroon  -0.144 -0.0019 # 0.0015 31864 0.20 1756-2010
Thailand -0.051 -0.0041 + 0.0019* 19860 1.83 1834-2010
All sites -0.073 -0.0027 + 0.0010** 65415 2.80 1756-2010

AAIC: differences in Akaike’s information criterion between models with and without a year effect (cf.
Burnham et al., 2011; Murtaugh, 2014)
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5.4 Discussion

This is one of the first studies to assess species-specific long-term growth
changes in tropical forest trees. We assessed these changes using tree-ring
data from three sites across the tropics. Of the 13 species analysed, 10 showed
growth decreases over time, two showed growth increases and for one species
no growth changes were detected. When analysing trends on site-level, an
aggregated negative trend was found in the for the trees from Thailand. Finally,
we found indications of an aggregated growth decrease when analysing trends
in all species across the three sites.

Species specific trends

For the majority of the tree species analysed here (12 out of 13), growth rates have
changed in the past two centuries and, in 10 cases, growth has declined over
time (Figure 5.4). The growth reductions found for many species may indicate
worsening growth conditions in time. Similar growth reductions have also been
found in other studies, though for much shorter periods of time (Feeley et al.,
2007), or analysed using smaller sample sizes (Nock et al., 2011). In both studies,
these growth decreases have been linked to increasing temperatures, which for
tropical species may already be reaching limiting values, especially during the
hottest periods of the day (Doughty & Goulden, 2008).

That growth conditions may be worsening is supported by the quantile
regressions (Figure 5.5) and by the fact that several species in Thailand and
Cameroon show weak regeneration in the last 20-80 years (Vlam, 2014). Weak
or failing regeneration is common in tropical forests (e.g., Poorter et al., 1996;
Newbery et al., 2013; Vlam, 2014) and may indeed reflect changing climatic
conditions (Vlam et al., 2014a). However, it may also be caused by changes in
(anthropogenic) disturbance (Muller-Landau, 2009), be part of the life-history
strategy of a species (Newbery et al., 2013) or be caused by the lack of large-scale
disturbances (Baker et al., 2005). A lack of regeneration, or regeneration in
pulses, has large consequences for the detection of trends. Age clustering may
affect the detection of (growth) trends in studies based on tree-ring data as well
as in studies based on permanent sample plots (Muller-Landau, 2009). In tree-
ring data, such age clustering may cause apparent growth decreases (conditions
in the past better than conditions now), whereas in plot studies, age clustering
may induce apparent increases in biomass (while growth rates may decrease).
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If regeneration only occurs under large-scale disturbance, which are rare, trends
in growth may be apparent that are induced by the recovery of forests from this
disturbance (Fisher et al., 2008; Chambers et al., 2013). Disentangling trends
caused by changing regeneration conditions from long-term trends induced by
climatic changes (e.g., in temperature of CO, concentrations) is very challenging,
for both tree-ring and PSP based studies.

Robustness of growth trends results

Detecting trends in forest tree growth is challenging, irrespective of working
with growth data obtained from PSPs or from tree-ring measurements (Bowman
et al., 2013) and several biases may erroneously induce trends. In PSP studies,
these biases may be induced if plots have not been installed at random locations
(Phillips et al., 2004) or by the relatively small size of plots (Chambers et al., 2013).
For tree-ring studies, biases may be induced by sampling design (Nehrbass-Ahles
etal., 2014), due to the nature of growth data (Brienen ef al., 2012a; Bowman et al.,
2013), or by the choice of trend detection method (CHAPTER 4). As we sampled
trees randomly in space and following their size distribution in the forest, biases
caused by sampling design probably did not affect our results. Next, we will
discuss the two biases that may have influenced the detection of trends.

To assess for the presence of the ‘pre-death slow growth’ bias, we
tested whether the removal of the last 15 years of growth caused a change in the
detected trend. For only two species — M. azedarach and Sweetia fruticosa — did this
removal result in a change in trend consistent with this bias: trends changed
from negative to positive (Supplementary figure 5.2). This bias may thus have
induced the negative trends detected for these species. However, the sample size
for M. azedarach reduced considerably after removing the last 15 years of growth
data (from 2619 to 942, Table 5.2 + Supplementary table 5.1), due to the species’
short lifespan (maximum ~60 years). Whether this inversion in the trend for M.
azedarach was caused by the pre-death slow growth bias or due to the exclusion
of a large part of the ‘population’ is difficult to ascertain. Individuals of Sweetia
fruticosa may indeed be showing a growth trend due to the ‘pre-death slow growth’
bias. Sampling dead trees could be used to ascertaining whether this bias takes
place. However, this is difficult in the tropics, due to high decomposition rates.

The juvenile selection bias’ may lead to the detection of growth decreases
over time or to the masking of growth increases. We expect this bias to be present
mostly for light-demanding tree species (e.g., the long-lived pioneers M. azedarach
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and Terminalia ivorensis) as young individuals of these species require high light
conditions and fast growth to reach maturity. Although several of the species
analysed here are light demanding species (Table 5.1), only for one species — Afzelia
xylocarpa—evidence was found that slow growers in the distant past were ‘removed’
from the dataset, i.e., the lower quantile showed a growth reduction (Figure 5.5).
This species shows a spatial and temporal pattern in regeneration (Vlam ef al.,
2014a), which may hamper assessing the effect of the juvenile selection bias on the
trends. For most species growth trends in the quantiles were similar to the trends
detected in all data, reinforcing the suggestion that these trends were caused by
changing growth conditions and not by the juvenile selection bias.

Aggregated trends per site
In the analysis of consistency in trends per site, only for the Thailand sites did we
find evidence that growth changes have occurred consistently among different
species. In Thailand, the aggregated negative trend suggest worsening growth
conditions for all species. Such growth reductions were also found in a large-
scale (50 ha) monitoring plot adjacent to our study site (Dong et al., 2012) and
also using tree-ring analysis for three of the species also studied here: Chukrasia
tabularis, M. azedarach and Toona ciliata (Nock et al., 2011), though for much
smaller sample sizes (from 14-36 trees). Paradoxically, Nock et al. (2011) found
growth reductions together with increases in intrinsic water-use efficiencies,
suggesting that growth decreased while the photosynthetic capacity of trees
increased over time. Unravelling the causes for these growth changes and
assessing whether growth conditions have indeed changed is challenging.
Growth of most Thai species analysed here is positively related to precipitation
amount and negatively to temperature (Vlam ef al., 2014b). Rising temperatures
and respiration costs, and more frequent El Nifio events may have induced these
growth declines (Nock et al., 2011). The hump-shaped age distributions found
for many of the Thai species (Vlam, 2014) supports the suggestion of worsening
conditions in the more recent past. Additionally, we believe that the recovery
from (large-scale) disturbances may also be driving the growth reduction
detected for the Thai site (Baker ef al., 2005), perhaps in combination with the
climatic changes mentioned above.

The lack in consistent growth changes in Bolivia and Cameroon
suggest that growth is not driven by a single factor in these sites. The Bolivian
site is the second dryest forests in this study and temperature increases noted

173



Chapter s

for the area (Seiler et al., 2013) could explain decreases in growth found on
species-level (Seiler et al., 2013). However, the Bolivian species showed no
regeneration problems (Vlam, 2014), suggesting unaltered conditions — at
least for regeneration — in the recent past. On the other hand, forest fires
have disturbed parts of the forest in the last two decades (Blate, 2005; Lopez
et al., 2012) and may thus have enhanced the regeneration of light-demanding
species.

Several species in Cameroon showed growth reductions and no
regeneration in the recent past (Vlam, 2014), suggesting changing conditions
in the area. Increases in temperature have been noted (for the past ~50 years)
in the study area, while precipitation did not change (Molua & Lambi, 2006).
However, no aggregated trends were noted for the Cameroonian site, suggesting
not external factor changed growth for all species. A reduction in human-
induced disturbances (Pourtier, 1989; Oslisly ef al., 2013) may in part explain
the worsening conditions (i.e., by closing of the canopy, while defaunation due
to the bush meat hunting (Abernethy et al., 2013)2013 could explain the lacking
regeneration in Cameroon. Lacking regeneration does not necessarily mean a
growth reduction as Daniellia ogea showed a growth increase (Figure 5.4) while
lacking regeneration (Vlam, 2014).

Trends across sites

We found evidence for a growth reduction across all study sites. Although
not conclusive (AAIC = 2.8, Table 5.3; cf. Burnham et al., 2011), these results
suggest tropical forests tree growth has reduced in the past ~150 years. These
results contrast strongly with the growth increases expected under a strong
CO,-fertilization effect (Lloyd & Farquhar, 2008), and with several studies that
found decadal-scale increases in forest biomass (Phillips ef al., 2008; Lewis et
al., 2009b) and in growth rates (Laurance et al., 2004b). Surprisingly, growth
did notincrease in spite of increases in intrinsic water-use efficiency over time
being found in trees of 12 of our study species (Nock et al., 2011; van der Sleen,
2014). Tropical forest growth is sensitive to temperature (Clark et al., 2010) and
the increasing temperatures may have induced the growth decreases (Feeley
et al., 2007; Nock et al., 2011). The effects of rising CO, concentrations and
rising temperatures on growth could cancel each other out. Also, tree growth
might not be carbon limited in tropical forests, with other nutrients limiting
growth (e.g., phosphorus Lloyd et al., 2001). Additionally, the suggested gains
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in photosynthesis due to the higher CO, levels may not be invested in stem
growth, as diameter growth is low on the carbon allocation hierarchy (Sala et
al., 2012; Richardson et al., 2013).

Implications and outlook

Tropical forests are as complex as the combination of all species and their
interactions. Understanding how growth changes occur on the species level thus
forms the basis to understand whether site or forest changes are taking place.
We found species-level growth changes for most of the species analysed, but that
these changes were not necessarily reflected in the aggregated trends for the
sites. That these results may vary illustrates the importance of assessing trends
on both the level of species and sites.

Our results showed decreasing growth rates for most of the species
analysed. However, when analysed for all species together trends were less
pronounced, with only weak (non-conclusive) aggregated trends being detected.
Still, these results contrast strongly with the increases in growth of tropical forest
trees found in several studies (Laurance et al., 2004b; Lewis et al., 2009a) and
expected under CO -fertilization (Lloyd & Farquhar, 2008). If growth of tropical
forest trees is indeed decreasing — or at least not changing — this will have large
consequences for the projections of the carbon dynamics of tropical forests
under increasing ambient CO, (Huntingford et al., 2013). Currently, models used
to predict vegetation development under changing climate — dynamic global
vegetation models —assume a CO -fertilization on the growth of tropical forests
(Sitch et al., 2008; Huntingford et al., 2013), with tropical forests predicted to act
as a carbon sink in the coming century. This widespread assumption of CO -
fertilisation is controversial (Kdrner, 2009) and may not be valid for the species
studied here (van der Sleen, 2014). Our results support the assumption that
elevated ambient CO, does not directly lead to higher tree growth. Furthermore,
changing growth rates may lead to shifts in competition between species, which
may lead to and may species shifts and dominance of more drought adapted
species (e.g., if temperatures increase; Feeley et al., 2011). These shifts may be
already happening in tropical forests (Laurance et al., 2004b) as suggested by the
lacking regeneration for many our study species (Vlam, 2014).

Detecting whether changes have or are taking place in tropical forest
growth is challenging (Bowman et al., 2013), and every method used to assess these
changes - tree-ring analysis, monitoring plots, etc. — has limitations and biases
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(Phillips et al., 2004; Brienen et al., 2012a; Chambers et al., 2013). Understanding the
driversofthese changesispossibly even more challenging—and arguably even more
important — than only detecting them. We argue that to know whether and why
tropical forests are changing requires an integrative approach, combining long-
term growth data (from tree-rings) with field measurements from monitoring
plots; e.g. (Lewis et al., 2009b), carbon flux estimates (e.g., Saleska et al., 2003),
and large-scale experimental studies (e.g., Nepstad et al., 2007; Tollefson, 2013).
Monitoring plots provide the most complete data on the dynamics and changes
in tropical forests as it includes growth, mortality and regeneration rates, and
allows to assess changes in species composition (Laurance et al., 2004b). Carbon
flux measurements provide large-scale estimates of the carbon dynamics and net
primary productivity of forests (e.g., Saleska ef al., 2003; Gatti et al., 2014). Large-
scale experimental approaches allow to directly quantify the effects of (predicted)
climatic changes on plant processes and growth (e.g., Nepstad et al., 2007), and the
foreseen CO -enrichment experiment in the Amazon (Tollefson, 2013) will fulfilan
importantknowledge gap ontopical forest responsestohigher CO, concentrations.
Tree-ring analysis can provide a long-term perspective to extrapolate results
from short-term measurements and experiments to the scale of centuries. Such
integrative approaches have been applied in temperate forests (Girardin et al.,
2008; Babst et al., 2014b; Belmecheri et al., 2014), but are still lacking in the tropics.
More tree-ring studies are needed in the tropics and many species throughout the
tropics produce annual rings (Zuidema et al., 2012). Tree-ring analysis provides the
species-specific and long-term growth data necessary to assess changes in tree-
growth on relevant time-scales. A standardized sampling protocol, analogous to
the existing protocols for sampling plots (e.g. RAINFOR, AfriTRON, CTFS), would
greatly increase the potential of using tree rings to detect and compare growth
changes in forests trees worldwide. In the tropics, further studies should focus on
widespread or dominant species (e.g., hyperdominant’ species;Ter Steege et al.,
2013), of which many produce rings and that can be sampled in large number over
large areas. Additionally, the analysis of stable-isotopes in the tree-rings provides
additional information on both environmental (Fichtler ef al., 2010; Brienen et
al., 2012b), and physiological processes (Nock et al., 2011; van der Sleen, 2014) that
drive tree growth. Integrated with other methods and combined with the analysis
of stable isotopes, well-designed tree-ring sampling can provide the (missing
and) important long-term contextual information that is needed to understand
growth changes.
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Supplementary materials
Appendix A - Results SCl analysis

Supplementary table 5.1: Species-level analysis of long-term trends for the 13 tree species using the
regional curve standardisation (RCS) and size class isolation (SCI) methods. Trends indicated as the year
effect of analysis (red = growth decreases, green = growth increases) and significant trends marked in
bold. Also indicated: sample size (n), and period of analysis.

Studysite  Species RCSyear Sample Periodof SCIyear Sample  Period of
effect’ size analysis  effect® size analysis

Bolivia Ampelocera -0.134 2304 1937-2010 341 1945-2.009
Tuizii
Cariniana -0.033" 5202 1874-2010  0.001 833 1876-2009
ianeirensis
Hura 0.049* 2725 1894-2010 0.002** 635 1856-2009
crepitans
Sweetia -0.160°"F 3463 1838-2010 -0.001 448 1802-2010
fruticosa

Cameroon  Brachystegia -0.269"*F 8814 1864-2010 -0.008*** 1367 1870-2010
cynometroides
Brachystegia -0.186"*" 7761 1854-2010 -0.001° 1551 1857-2010
eurycoma
Daniellia 0.216"** 9693 1756-2010  0.001°** 1585 1749-2010
ogea
Terminalia -0.205"** 5601 1850-2010 -0.003"* 1392 1838-2010
ivorensis

Thailand  Afzelia -0.010 6427 1834-2010  0.000 1218 1826-2010
xylocarpa
Chukrasia -0.109%%% 4416 1897-2010 -0.001 702 1835-2010
tabularis
Melia -0.278"%* 2619 1941-2010 -0.007°** 855 1894-2010
azedarach
Neolitsea -0.214*** 3989 1890-2010 -0.002% 515 1906-2010
obtusifolia
Toona -0.081°"" 2415 1915-2010  -0.001 533 1864-2010
ciliata

'RCS analysis: trends computed with Pearson’s correlations of (log transformed) standardised growth
rates against calendar year

28CI analysis: trends assessed with linear mixed-effect models on (log transformed) basal area increment,
with ‘calendar year’ as fixed factor and ‘size class’ as random factor.

Significance trends indicated as: * p < 0.05; ** p < 0.01; and *** p < 0.001)
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Supplementary table 5.2: Linear mixed-effect model results for the regional curve standardisation (RCS)
and the size-class isolation (SCI) methods. We analysed temporal trends in growth using ‘calendar year’
as fixed factor (Effect year). In the analysis per site, ‘species’ were included as random effects in the RCS
and ‘diameter category nested in ‘species’ for the SCI. For the analysis for all sites, these random factors
were further nested in ‘site’. For the RCS, input data were the log transformed residual growth rates and
for the SCI log transformed basal area increment. Two-tailed significance indicated with * =p < 0.05.

Detection method  Study Intercept Effect year Sample size Period of
site analysis

RCS Bolivia -0.0326 -0.0018 13694 1838-2010
Cameroon -0.1444 -0.0019 31869 1756-2.010
Thailand -0.0513 -0.0041* 19866 1834-2010
All sites -0.0743 -0.0027** 65429 1756-2010

SCI Bolivia 3.1328 0.0037 2257 1802-2010
Cameroon 3.9786 -0.0027 5895 1749-2010
Thailand 3.1136 -0.0020 3823 1826-2010
All sites 3.5853 -0.0008 11975 1749-2010

179



Chapter s

Supplementary figure 5.1. Long-term trends in in growth for 13 species from three tropical sites, using
the raw residuals from the regional curve standardisation. Trends computed with Spearman’s rank
correlation between (log transformed) standardised growth rates against calendar year. Solid lines
indicate significant trends in the quantiles, dashed lines non-significant trends. Note the varying x-axis.
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Appendix B — Assessing the presence of biases

Juvenile selection bias

Supplementary table 5.3: Analysis of long-term trends in growth on the upper and lower quantiles for 13
tropical tree species. Trends calculated with Pearson’s r and significance indicated with * p < 0.05; **

p <o0.01; and **¥ p < 0.001.

Study site Species Guild Alldata Lower quantile Upper quantile
Bolivia Ampelocera ruizii ST -0.134%%% -0.151%%% -0.246™**
Cariniana ianeirensis PST -0.033* -0.003 0.009
Hura crepitans PST 0.049* 0.010 0.231°%%
Sweetia fruticosa LLP -0.160**% -0.430%"* -0.152%**
Cameroon  Brachystegia cynometroides PST -0.269** -0.126**% -0.171%%*
Brachystegia eurycoma PST -0.186™"* -0.339%% -0.185™**
Daniellia ogea LLP 0.216*% 0.283"** 0.291°*%
Terminalia ivorensis LLP -0.205™** 0.084 -0.003
Thailand Afzelia xylocarpa LLP n.s. -0.148"* 0.015
Chukrasia tabularis PST -0.109™** -0.200""* -o.111**
Melia azedarach LLP -0.278%** -0.356** -0.255*
Neolitsea obtusifolia ST -0.214%% -0.399%** -0.202**
Toona ciliata LLP -0.081%** -0.103 -0.049

Pre-death slow growth bias

Supplementary table 5.4: Test for ‘pre-death slow growth’ bias: linear mixed-effect model results for
analysis of trends per site and for all sites combined. We removed the last 15 years of growth (years after 1985)
and re-analysed long-term trends in growth in residual growth rates. We used the same mixed-effect
models, with ‘calendar year’ as fixed factor (Effect year), including in the analysis per site, ‘species’ as random
effects; and for the analysis for all sites, ‘species’ was further nested in ‘site’. Growth data were log transformed
to normalize data and stabilize variation. Two-tailed significance indicated with: * p < 0.05; ** p < 0.01.

Intercept Sterror  p-value Yeareffect Sterror p-value DF
Intercept Year
Bolivia Intercept ~ 0.022087  0.117501 0.8509  -0.001623  0.002167  0.4539 7258

Cameroon Intercept -0.106406 0.056784 0.0610 -0.001746  0.001402  0.2131 24598
Thailand  Intercept  -0.067501  0.032346 0.0369 -0.000049 0.001316  0.9701 12245

All Intercept -0.051774 0.039397 ©0.1888 -0.001060 0.000806 0.1886 44103
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Supplementary figure 5.2. Long-term trends in in growth for 13 species from three tropical sites after
removal of the last 15 years of growth data to assess the ‘pre-death slow growth’ bias (cf. Brienen et al.,
2012a). Trends computed on residual growth rate from the regional curve standardisation with Pearson’s
correlations between (log transformed) growth rates and calendar year. Solid lines indicate significant
trends in the quantiles, dashed lines non-significant trends. Note the varying x-axis.
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Tropical forests harbour an incredible diversity, are a key element of the
global carbon cycle (Bonan, 2008) and provide many goods and services (e.g.,
fruits, timber and non-timber forest products). Due to the high storage and
processing of carbon by tropical forests, changes in forest cover and in the
net uptake or loss of carbon by forests have large implications for the global
carbon cycle (Pan et al., 2011). Tropical forests are under increasing pressure
and undergoing rapid changes due to deforestation, conversion to other land
uses and logging. Additionally, there is evidence that intact tropical forests are
undergoing changes due to the effects of climate change. Most notably, there is
evidence for increases in biomass of intact tropical forests (Lewis et al., 2009a),
suggesting that intact tropical forests have acted as carbon sinks over the past
decades. As monitoring plots usually cover only a few decades, it is still unclear if
these changes are driven by long-term alterations in the forest or by short-term
climatic fluctuations (e.g., Feeley et al., 2011). Assessing whether changes have
occurred over centennial scales is thus crucial to understanding whether and
how tropical forests are reacting to climatic changes.

In this thesis we used tree-ring analysis to assess long-term changes
in growth of tropical forests (over the last ~150 years). Additionally, we applied
growth data derived from tree rings to evaluate the sustainability of forest
management practices in Cameroon. In CHAPTER 2 of this dissertation, we
assessed the potential for using tree-rings in wet tropical forests in Central
Africa and evaluated the presence and annual formation of ring boundaries in
the wood of commercially exploited tree species. In CHAPTER 3, we used the
growth rates obtained from tree rings to assess future timber productivity for
four Cameroonian timber species. For this purpose we simulated their logging
yields (i.e., volume of timber logged) in the next logging cycle and compared
these yields to the volume cut at the first cycle (i.e., can yields be sustained over
time). In CHAPTER 4 we used measured tree-ring data and simulated growth
trajectories to evaluate how different detrending methods affect the detection
of long-term trends in growth data from tree-rings. In CHAPTER 5 we analysed
centennial-scale changes in growth rates of 13 tropical tree species collected in
three sites throughout the tropics.

In this chapter the main findings of this dissertation and discuss their
consequences. Finally, we provide an overview of the main methods used to
detect changes in tropical forests and provide recommendations on how to
integrate them.
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6.1 Potential of tree-ring analysis is the tropics

For more than a century it has been known that tropical tree species may form
annual growth rings (Brandis, 1898; Coster, 1927; Worbes, 2002). However, for long
the formation of annual rings in tropical rainforests trees has been denied (Swaine,
1994; Chambers et al., 1998; Kurokawa et al., 2003). Researcher often believed that
rainforests lack seasonality and therefore, that growth in these ecosystems is
continuous throughout the year (i.e., no period of cambial dormancy). The passing
of the Intertropical Convergence Zone, however, induces seasonality throughout
tropical regions (Waliser & Somerville, 1994) and most tropical forests are
considered to be seasonal (Underwood et al., 2014). This seasonality influences tree
growth and even in wet evergreen tropical rainforests growth of trees is driven
by climate (Clark et al., 2010). In the ‘dry’ season cambial activity stops (Moya &
Tomazelo-Filho, 2009) and some tree species form annual growth rings (Fichtler
et al., 2003; CHAPTER 2). Furthermore, the strength of the seasonality also varies,
ranging from regions with strongly seasonal climates and well demarcated dry
seasons to regions with (nearly) ever-wet climate. This variation in seasonality
raises the questions whether tree rings are formed across all tropical climatic
zones, and what proportion of tropical tree species form annual ring boundaries.

The last two decades have seen an increase in tree-ring analyses in the
tropics (Worbes, 2002, and references therein) and in its application for forest
ecology (Worbes et al., 2003) and forest management (Brienen & Zuidema,
20063; De Ridder et al., 2013b). In CHAPTER 2 of this dissertation, we further
explored the potential to use tree rings in tropical rainforests. We evaluated
whether growth rings are formed annually in the wood of tree species growing
under very high levels of precipitation (>4000 mm) and in conditions considered
improper for ring formation (Swaine, 1994; Whitmore, 1998). For this purpose,
we assessed whether ring structures are formed in the wood of the 22 tree
species, which were selected as they were commercially exploited in the region.
We showed that ring structures are formed in the wood of more than half of
them (in 14 species), with variation in ring clarity between species. On four
species, out of a subset of five evaluated, we proved the annual character of ring
formation using radiocarbon bomb-peak dating.

That ring structures are formed under high levels of rainfall, as is the
case in our site in Cameroon, is remarkable. Water is probably not a strong
limiting factor for growth in these forests, and trees thus do not have to
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avoid drought by shedding leaves and entering a period of cambial dormancy
(Borchert, 1999). In spite of the high levels of rainfall, many of the species
studied in CHAPTER 2 do shed their leaves and, together with the formation
of ring structures in the wood, this suggests that these species show periods of
cambial dormancy. For several species, individual trees growing near or on the
banks of permanent rivers were observed to also shed their leaves. These trees
probably do not experience a drought signal at all, suggesting that the deciduous
character of these species — and therefore their ring formation - is genetically
determined. Leaf-shedding might thus simply be genetically built in, perhaps
as a remnant adaptation to drier conditions in the past (Maley & Brenac, 1998),
or as a physiological necessity for trees to renew their photosynthetic apparatus
(Wright & van Schaik, 1994).

The observed proportion of species forming tree-ring structures in
this thesis, 64%, is higher than proportions observed in other studies in dryer
regions. Across ecosystems in Brazil ring structures were found in 48% of the
species (Alves & Angyalossy-Alfonso, 2000), in dryer forests in Mexico for ~
40% of species (Roig et al., 2005; Brienen et al., 2009), and in the Amazon region
between 25% and 50% (Roig, 2000; Worbes, 2002). This higher proportion
seems contradictory to the expectation that tree-ring formation is inhibited by
the lack of a strong environmental signal at the study site in Cameroon. One of
the reasons for this higher proportion is that finding ring structures does not
entail that these structures are formed annually. Studies merely assessing the
presence of ring-structures (e.g., this study; and Alves & Angyalossy-Alfonso,
2000) may thus report higher proportions than studies that really prove
annual ring formation. Often, annual formation is only assessed for a subset
of species and, if proven, ‘extrapolated’ to the remaining species (e.g., Worbes
et al., 2003; Brienen et al., 2009). Additionally, it is important to note that
the species analysed in CHAPTER 2 were all commercially exploited species.
This set of species thus formed a non-random selection of the community
with certain (wood) characteristics that make them attractive as a source of
timber, e.g., ease of working, resistant to rotting, large and straight boles.
This subset of wood and tree characteristics may reflect certain physiological
traits (Westoby & Wright, 2006; Chave et al., 2009) that may also influence
ring formation. Whether the proportion of species forming ring structures
would be similar when performing a randomised or a complete screening of
the species in the forest — thus also including shade-tolerant and small stature
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tree species — is hard to tell. Yet, we believe that this proportion will be lower
if including all species and that growth rings will be more difficult to discern
(due to slow growth of trees in the shade). Notwithstanding, shade-tolerant
species may still form rings and high-quality annual rings have been found in
several understory tree species (Couralet et al., 2010), albeit under much drier
conditions (rainfall of ~1200 mm yr?). All things considered, care should thus
be taken when extrapolating this higher than expected proportion of species
forming rings to the community level. Clearly, structured screenings of all
species in a forest are needed to improve the estimations of the proportion
of ring-forming species. Nonetheless, that a significant proportion of species
forms growth rings under the wet conditions in this study, suggests that the
potential of using tree-rings is more or less similar throughout the tropics, at
least for forest regions showing some sort of seasonality (Worbes, 1989; Alves
& Angyalossy-Alfonso, 2000). Ultimately, we estimate that tree rings can be
used to measure growth and ages for around a quarter to a third of the tree
species growing in tropical forests with some kind of seasonality.

When considering only species that present high-quality annual rings,
i.e., that allow for the construction of chronologies to ensure exact dating, the
proportion of species is lower than those mentioned above, e.g., for only ~10%
of the species in drier African forests (Tarhule & Hughes, 2002). Although only
possible forarestricted number of species, the chronologies built for these species
can be used as a proxy to reconstruct climate. Such climate reconstructions are
very relevant and extremely important in the tropics, because of the doubtful
quality (Aguilar et al., 2005) and usual short timespans covered by meteorological
data in tropical countries (Clark, 2007). Tree-ring research on species with such
high-quality rings should thus be stimulated, especially for species with large
geographicaldistributions, such as Cedrelaodorata (in Centraland South America),
Toona cilliata (in tropical Asia and tropical Australia) and Entandrophragma spp.
(in West and Central Africa). At the same time, care needs to be taken not to
blindly focus on the handful of high-potential species at the expense of analysis
on other species that also form rings. For these other species, tree-ring analysis
can still be used and provides high value data on long-term (lifetime) growth
rates of trees. These growth data, although having a lower precision (e.g., for B.
cynometroides; CHAPTER 2), are still very useful to answer ecological questions
(such as in CHAPTERSs 5) and to aid sustainable management of tropical forests
(e.g.,in CHAPTER 3).
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For the remaining species that do not produce visible rings, or no ring
structures at all, several techniques exist to aid ring identification or to measure
annual (growth) signals in the wood. X-ray densitometry can be used to help
recognizing tree-ring boundaries (Worbes, 1995). High resolution measurements
of isotope concentrations (e.g., *C and *0) also shows great potential to provide
growth data and ages for ringless species (Poussart et al., 2004; Loader et al., 2007;
Pons & Helle, 2011). However, these isotope measurements require specialist
knowledge and infrastructure, need be corroborated with radiocarbon dating
and are very labour intensive, thus limiting their widespread application (van
der Sleen, 2014). Finally, the analysis of trace elements in the wood (e.g., calcium)
by synchrotron X-ray microanalysis may also reveal annual or seasonal signals
in the wood (Poussait et al., 2006). Synchrotron analysis is non-destructive and
relatively fast, thus allowing for a widespread application that can aid in ring-
boundary recognition (Poussaitet al., 2006). However, the underlying (ecological)
drivers of trace elements in wood are still poorly understood and it is imperative
to understand these drivers prior to interpreting synchrotron results.

Increasing (tree-ring) research efforts in the tropics would be
especially relevant for African tropical forests. These forests form the second
largest tropical forest tract worldwide, have a strong impact on the carbon cycle
(Cao et al., 2001; Williams et al., 2007) and strongly influence local and global
climate (Washington et al., 2013). Despite their importance, African forests are
the least studied of the world’s tropical forests (Malhi et al., 2013) and most ring
studies have focussed on the drier extents of these forests (Trouet et al., 2001;
Tarhule & Hughes, 2002; Therrell et al., 2007). Tree-ring analysis can provide
vitally important data to understand the growth and (carbon) dynamics
of African forests (Worbes et al., 2003; CHAPTER 5) and can also be used to
extend climatic records further back in time (Schongart et al., 2006). Very old
trees of species with high-quality rings can still be found in tropical African
forests, e.g. Entandrophragma cylindricum >500 years old (Détienne et al., 1998).
Growth variation in such old trees can be used as a proxy to reconstruct
climate far beyond any instrumental record (Nzogang, 2009; van der Sleen,
2014) and these ‘low hanging fruits’ (in tree-ring analysis terms) should receive
more research attention As logging continues and pristine forests become
more scarce, such vital records of growth and climate are being lost. It is thus
pertinent to further explore the full dendrochronological potential of these
species. Additionally, these ring-forming species are among the commercially
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most important species in Africa (CHAPTER 2) and tree-ring analysis can be
used to obtain growth data in a relatively fast way. In this way tree rings can
fill the knowledge gap on growth rates needed to evaluate the sustainability of
forest management practices (De Ridder et al., 2013b; CHAPTER 3).

6.2 A recipe for finding ring-producing tropical tree
species?

Future tree-ring studies would be greatly facilitated if there would be a ‘recipe’
for finding (high-quality) growth rings in tropical tree species. The presence of
growth rings is probably driven by genetic, environmental and physiological
factors. The formation of anatomical structures demarcating annual growth
may be genetically built in (Alves & Angyalossy-Alfonso, 2000; Eilmann et al.,
2014), and some (sub)families show species with high quality rings in all tropical
regions, e.g., Meliaceae and Ceasalpinoideae (Diinisch et al., 2003; Schongart et
al., 2006; Vlam et al., 2014b; CHAPTER 2). However, these families also contain
species that do not form rings (Détienne et al., 1998; CHAPTER 2), or species that
only form rings in the dryer parts of their geographical distribution (Tarhule
& Hughes, 2002). Working with species from these families may thus already
raise the odds of finding high-quality tree rings. However, these chances may be
higher if working in sites with strong seasonality in climate (Alves & Angyalossy-
Alfonso, 2000) or with trees growing under more limiting conditions (e.g., at
extremes of their distribution ranges, or on well-drained slopes). For species
that form tree-rings in wet tropical conditions and that have large geographical
distributions (e.g., Terminalia ivorensis, Entandrophragma utile), we expect that
rings will be easier to distinguish under drier, more seasonal climates (Moya &
Tomazelo-Filho, 2009; De Ridder et al., 2013a).

A physiological factor that influences the formation of growth ring
boundaries is the shedding of leaves. Species that shed their leaves enter a
period of cambial dormancy and are therefore most prone to produce annual
growth rings (Worbes, 1989; Tarhule & Hughes, 2002). The chance of finding
annual growth rings thus increases when working with deciduous tree
species. However, tree-ring analysis is also possible for tropical species that
are evergreen (Couralet et al., 2010), semi- deciduous (only partially shedding
leaves, e.g., Daniellia ogea; CHAPTER 2), or brevi-deciduous (leafless for a brief
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period of time; e.g., Bracystegia spp). For these species, however, ring formation
should be analysed with care as cambial dormancy may not occur over the entire
circumference of the stem or not be annually returning (but note that D. ogea
showed nice rings while being semi-deciduous, CHAPTER 2).

A clear recipe for finding growth rings in tropical tree species is thus
not evident. However, choosing deciduous species from families or genera that
show ring-forming species increases the chance of finding rings. Databases that
contain descriptions of ring boundaries (e.g., Insidewood; Richter & Dallwitz,
2000) are helpful to finding suitable species. However, ring descriptions in these
databases are often either erroneous or ambiguous (see Fact sheets, CHAPTER
2), and should thus be seen as indicatory. Also, tropical tree-ring analysis can be
difficult due to the lack of clear ring boundaries in certain species or on certain
portions of the stem, e.g., the inner or outer most rings. Additionally, rings may
be locally absent in certain parts of the tree’s circumference (i.e., wedging rings)
and false structures can be present in the wood that resemble ring boundaries
(e.g., intra-annual growth variations). These problems are not limited to, but
seem to be ubiquitous for tropical species (Worbes, 2002; Rozendaal & Zuidema,
2010). Thus, a simple recipe to finding ring-producing species does not exist.
This lacking recipe combined with the difficulties of working with tropical tree
rings, implies close scrutiny is needed when assessing ring formation in tropical
tree species.

6.3 Ages of tropical trees and prospects for sustainable
timber exploitation

Large and old trees play a very important role in the carbon balance of tropical
forests. These trees are key drivers of carbon retention and its variation in
tropical forests (Saatchi et al., 2011; Slik et al., 2013). In addition, biomass growth
in large trees may continuously increase over their entire lifespan (Stephenson et
al., 2014). Knowledge on the age of tropical trees is thus important to understand
the dynamics and accumulation rates of carbon in tropical forests and to model
their carbon retention potential (Galbraith et al, 2013). Tree-ring analysis
provides accurate age estimates of trees, which can be used to better understand
carbon dynamics and can be used to validate age estimates from permanent
plot studies (Martinez-Ramos & Alvarez-Buylla, 1998). Such age estimates,
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using indirect projections, have ranged from 22 (Martinez-Ramos & Alvarez-
Buylla, 1998) to over 1000 years (Condit et al., 1995; Laurance et al., 2004a). On the
other hand, ages derived directly from tree rings provided more conservative
estimates: maximum ages of ~ 500 year (Détienne et al., 1998; Fichtler et al., 2003;
Brienen & Zuidema, 2006a). Tree ages found in this study ranged from ~22 years
(T. ivorensis of ~80 cm dbh) to a maximum of nearly 300 years (D. ogea and E.
utile), thus suggesting that tree ages in wet tropical forests in Africa are in range,
or slightly lower, than those from other tropical (Détienne et al., 1998; Brienen
& Zuidema, 20063; Vlam et al., 2014b), and temperate regions (Loehle, 1988).
These results also reaffirm that the high age estimates for tropical trees found
in some studies — up to 2000 years (Chambers et al., 1998) — are either highly
overestimated or belonging to very exceptional individuals or species.

Tree ages can also be used for forest management purposes, for instance
to evaluate and improve (the sustainability of) logging operations. The potential
to use tree-rings for this purpose is high for many important commercial
species in South-America and Africa (Détienne ef al., 1998; Schongart et al., 2006;
CHAPTER 2). This potential is however, lower in Asia, where the most important
family of commercial species — the Dipterocarpaceae — generally lack visually
detectable rings (Poussart et al., 2004; Baker et al., 2005; Ohashi et al., 2009).

Assessing the sustainability of forest exploitations is complex and
depends first on defining sustainability and requires clarity about what is
to be sustained (Putz et al., 2012). Different elements of sustainability have
been suggested and assessed: maintenance of forest cover, the retention of
biodiversity or of carbon stocks, or achieving sustained logged volumes over
subsequent logging cycles. Obviously, financial sustainability often precedes
these elements. Also, several techniques exist to measure and evaluate each
of these elements. All these dimensions imply that evaluating sustainability is
complex and no consensus exists yet on the best definition of sustainability.

In CHAPTER 3 of this thesis, we integrated growth data from tree-rings
with logging inventory data to forecast whether timber yields can be sustained
in the next harvest round for four timber species in Cameroon. Yields at the
next harvest, simulated using the standard 30-year logging cycle and under the
maximum logging intensity, were predicted to reduce strongly for all species:
between 23.9% and 36.0%. Additionally, these simulations also showed that
volume ingrowth from trees that were below MCD in the first harvest accounted
for only ~10% of the total yield in the next harvest (CHAPTER 3). Doubling the
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logging cycle length resulted in higher yields and commercial ingrowth, but did
not result in yields being sustained (remained under 48% for all species). Using
species specific field-based logging intensities lead to remarkable increases
in yields: between 52-73% for the less valuable timber species. For the species
with the highest commercial value, E. utile, field-based logging intensities were
similar to the maximum allowed and thus using them did not result in yield
increases.

Theselowyields clearly suggest thatvolumes exploited at the firstlogging
round will not be sustained in the following cycle, even for a fast growing species
such as T. ivorensis. Declining yields are in line with other studies summarized
in Putz et al. (2012), and are considered almost inevitable, as the remaining trees
cannot grow back the volume accumulated over many years within current (or
reasonable) logging cycle lengths. This amount of accumulated volume over the
years is also called the ‘primary forests premium’ (cf. Keller et al., 2007). For the
species studied here, trees often grew more than 50 years between reaching the
MCD and being logged (e.g., up to 180 years for E. utile, CHAPTER 3), suggesting
a large primary forest premium for these species, and consequently, supporting
the suggestion that yields will be lower in the next logging cycle.

Most simulations of future logging yields are limited to one or two
logging cycles, as accurate data on tree regeneration, mortality and growth
after logging are scarce. Many of the exploited species occur at low densities
(<1 adult tree per ha) and show little regeneration (Schulze, 2008). Ultimately,
the sustainability of logging will depend on the successful regeneration of these
rare species and measures such as enrichment planting or tending of natural
regeneration may be needed to guarantee future timber stocks (Schwartz et al.,
2013). Additionally, other silvicultural measures may be taken to enhance the
growth of future crop trees, such as liberating them from lianas (Pefia-Claros
et al., 2008) and thinning of the forest after logging (Gourlet-Fleury et al., 2013).
However, depending on their intensities, these silvicultural measures may
be expensive (Mostacedo & Fredericksen, 1999) and long-term monitoring is
required to evaluate their effectiveness and economic viability (Pefia-Claros et
al., 2008; Gourlet-Fleury et al., 2013). Ideally, such evaluations should also include
the demographic consequences of logging (Verwer et al., 2008; Free et al., 2014;
Grogan et al., 2014), using population models that incorporate the effects of
logging on the regeneration, mortality and growth rates of a tree species. One
of the possible approaches to do so is to use integral projection models (cf.
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Zuidema et al., 2010) to combine the long-term growth data from tree-rings with
results from monitoring of these silvicultural measures (Verwer et al., 2008).
These models accurately incorporate the variation in vital rates (e.g., growth,
reproduction, survivor) with a species and can be used to accurately predict
future population growth. For a large number of tropical timber species tree-
ring data are already available that can be used in such simulations (see Table 6.1
for a non-exhaustive list).

Although species-specific yield declines may be inevitable, care is
needed avoid forest use becomes financially unsustainable. Forests with
reduced financial value due to forest-level overexploitation of timber resources
run a higher chance to be converted to other non-forest land uses. Ideally,
measures should be taken to ensure logging occurs more sustainably. Increasing
logging cycle lengths or minimum cutting diameters (MCD), or decreasing
logging intensities, are some of these measures. Increasing logging cycle
lengths, however, requires long-term commitment and investments from
logging companies. These commitments are hampered by the unstable politico-
economical environments in many tropical countries. Thus, increasing the
MCD or reducing logging intensities remain as more viable options. That actual
intensities in the field for three of the species are lower than the maximum
allowed, and projected yield higher, is hopeful. The lower field-based intensities
imply that the primary forest premium is ‘spread’ over subsequent logging
cycles, increasing the long-term financial viability of timber exploitation. Timber
exploitation throughout the tropics usually focusses on only a handful of these
high-value species (Holmes et al., 2002; Ruiz-Pérez et al., 2005), and we expect
that for most of them logging intensities are consistently high. Increasing MCD
is then crucial to not overexploit these species. Additionally, shifting exploitation
focus to ‘lesser known timber species’ is fundamental to maintain forest-level
timber yields (Putz et al., 2012). Any measures to stimulate the use of alternative
species are highly encouraged (e.g., ITTO, 1990), and these shifts in exploitation
should ideally already be implemented in current harvest.
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Table 6.1: List of commercial tree species from moist and wet tropical forests for which growth rates have
been measured from tree-rings (>25 individuals measured). These growth data can be used with
demographic models to increase the accuracy of timber yield simulations and to assess the consequences

of logging on tree populations.

Species name Family Country #trees Reference
Amburana cearensis Fabaceae Bolivia 36 Brienen and
Zuidema (2006a)
Cedrela odorata Meliaceae Bolivia 60 Brienen and
Zuidema (2006a)
Cedrelinga catenaeformis Fabaceae Bolivia 33 Brienen and
Zuidema (2006a)
Terminalia superba Combretaceae  Democratic Republic 60 De Ridder et al.
Congo (2013b)
Terminalia superba Combretaceae  Ivory Coast 29 De Ridder et al.
(2013b)
Aucumea klaineana Burseraceae Gabon 83 Détienne et al.
(1998)
Entandrophragma cylindricum  Meliaceae Central African 104 Détienne et al.
Republic (1998)
Entandrophragma utile Meliaceae Central African 59 Détienne et al.
Republic (1998)
Triplochiton scleroxylon Malvaceae Central African 101 Détienne et al.
Republic (1998)
Cedrela odorata Meliaceae Brazil 64 Diinisch et al. (2003)
Swietenia macrophylla Meliaceae Brazil 47 Diinisch et al. (2003)
Tabebuia barbata Bignoniaceae  Brazil 40 Da Fonseca Junior
etal. (2009)
Vatairea guianensis Fabaceae Brazil 40 Da Fonseca Junior
etal. (2009)
Microberlinia bisulcata Fabaceae Cameroon 46 Newbery et al. (2013)
Entandrophragma candollei Meliaceae Cameroon 41 Nzogang (2009)
Entandrophragma cylindricum ~ Meliaceae Cameroon 75 Nzogang (2009)
Entandrophragma utile Meliaceae Cameroon 25 Nzogang (2009)
Erytrophleum ivorense Fabaceae Cameroon 52 Nzogang (2009)
Milicia excelsa Moraceae Cameroon 34 Nzogang (2009)
Cedrelinga catenaeformis Fabaceae Bolivia 29 Rozendaal et al.
(2010b)
Clarisia racemosa Moraceae Bolivia 35 Rozendaal et al.
(2010b)
Peltogyne cf. heterophylla Fabaceae Bolivia 29 Rozendaal et al.
(2010b)
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Species name Family Country #trees Reference

Piranhea trifoliata Euphorbiaceae  Brazil 28 Rozendaal et al.
(2010b)

Anogeissus leiocarpus Combretaceae  Benin & Ivory Coast 60 Schéngartet al.
(2006)

Daniellia oliveri Fabaceae Benin & Ivory Coast 45 Schongart et al.
(2006)

Diospyros abyssinica Ebenaceae Benin & Ivory Coast 25 Schéngartet al.
(2006)

Pterocarpus erinaceus Fabaceae Benin & Ivory Coast 25 Schéngartet al.
(2006)

Ilex inundata Aquifoliaceae  Brazil 47 Schongart (2008)

Luehea cymulosa Malvaceae Brazil 34 Schéngart (2008)

Piranhea trifoliata Euphorbiaceae  Brazil 74 Schongart (2008)

Garcinia brasiliensis Clusiaceae Brazil 80 da Silva Marinho et
al. (2013)

Hevea spruceana Euphorbiaceae  Brazil 25 da Silva Marinho et
al. (2013)

Schizolobium amazonicum Fabaceae Bolivia 100 van der Sleen,

unpublished

The measures mentioned above may however, lead to a dilemma.
Lowering timber exploitation at the first harvest may lead to sustained yields
in the future, but will also diminish current financial gains from the forest,
possibly making logging economically unfeasible. On the other hand, high
yields now may lead to economically unfeasible logging in the near future,
thus only postponing de devaluation of forests’ value. If exploiting the forest
is economically unattractive, the risk of conversion to non-forest land uses
increases (e.g., to palm-oil plantation; Oakland Institute, 2012). Avoiding such
conversion, and thus maintaining forest cover, is one of the highest priorities to
conserve tropical forests in the future (Edwards et al., 2011).

Clearly, a simple solution for this dilemma is not at hand. The proposed
measures will lead to lower timber production or may reduce revenue for the
logging companies (e.g., through increased exploitation costs, or lower timber
prices of alternative species). Ensuring financial viability of logging in the
future may require additional compensatory measures to exacerbate the lower
revenues of applying such measures. Although prices of certified timber (i.e.,
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from well-managed forests) are usually higher than of conventional timber,
they have until now remained too low to induce significant shifts in forest
management practices (Meijaard et al., 2005). Prices of timber may inevitably
increase in the near future, as tropical timber production is expected to decline
in the near future (Shearman et al., 2012), which may possibly increase the
financial viability of logging. However, to further stimulate sustainable timber
production, measures such as payment for ecosystem services of tropical forests
may also be required. Logged forests still retain large stocks of carbon (Gourlet-
Fleury et al., 2013; Sist et al., 2014), and carbon recovery can be relatively fast,
especially if exploitation follows reduced impact logging protocols (RIL; West et
al., 2014). The retention and fast recovery of carbon stocks from logged forests
imply that carbon-offset schemes (e.g., REDD+) can be applied to compensate
logging companies for wood volumes not extracted (Loarie et al., 2009).

6.5 Detecting growth changes in the tropics, what can
tree rings tell us?

Most carbon in forests worldwide is stored in the form of wood and tree-rings
register the variation in wood growth over time. Wood increment represents
the final balance of photosynthate production in the leaves and its allocation
of carbon to diameter growth. Photosynthates generated in the leaves are
controlled by the availability of light, water, CO, and nutrients, whereas the
allocation of photosynthates to wood is related to plant strategies (Kuptz et al.,
2011), and to water, nutrients and carbon availability (Trouet et al., 2012; Chen
et al., 2013). Several lines of evidence show that wood growth has the lowest
priority in carbon allocation of trees (Sala et al., 2012; Richardson ef al., 2013), in
particular during periods of (environmental) stress, when carbon allocation is
prioritized to reserves, i.e., non-structural carbon (Smith & Stitt, 2007), possibly
as a strategy to increase survival chances (O’'Brien et al., 2014). Wood having the
lowest carbon-allocation priority implies that wood increment (i.e., diameter
growth) shows strong annual variation between favourable and adverse growing
conditions(Rocha, 2013). The width of tree rings thus registers environmental
signals, making ring-width a good proxy for climatic variations, and this has
led to the wide application of tree-ring studies in climate reconstructions (e.g.,
Esper et al., 2002; Schongart et al., 2006).
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Ring width is also a good proxy for the carbon sequestration of trees
(Bouriaud et al., 2005). Due to the long-term coverage of growth variability, tree-
ring analysis can thus also be used to assess long-term changes in tree (biomass)
growth, that can be related to the reaction of (tropical) forests to climatic
changes. Despite the potential for long-term analyses of growth change, tree
rings have only rarely been applied for this purpose in the tropics (Rozendaal
et al., 2010b; Nock et al., 2011). In CHAPTER 5 of this thesis, we assessed these
long-term growth change using tree-rings measured across three tropical
locations. Detecting these long-term trends using tree-rings is, however, not
straightforward and has restrictions that need to be accounted for. Next, we
discuss several of these restrictions and possible adaptations in sampling and
analysis that we believe will help to overcome them.

The first restriction emerges from classical sampling strategies and
analyses methods in dendrochronology. Classical dendrochronological studies
(in temperate regions) usually focus on long-term climate reconstructions and
therefore concentrate sampling on the largest and oldest trees in a community
and preferably those growing under extremely limiting conditions (e.g.,
on mountain slopes). Then, of these very old samples, only those that show
a common growth signal (i.e., that crossdate well to one another) are chosen
for further analysis. Trends in growth are then computed on these subsets of
well-crossdating old trees, using methods that are arbitrarily chosen, based
either on the method yielding the ‘best results’ (e.g., highest inter-series
correlations; Holmes, 1983) or based on a priori assumptions (e.g., Silva et
al., 2009). This workflow results in long data series that are very valuable for
climatic reconstructions. These studies usually cover long timespans (up to
several centuries; Esper et al., 2002)2002 and many are based on large amount
of measured trees, distributed over large areas. These climatic reconstructions
are therefore robust and these climatic reconstructions are pivotal to
understand growth variations in the last millennia. However, the focus on only
large old trees combined with the different steps of ‘subsetting’ data, makes
these analysis flawed when detecting long-term growth trends. This workflow
causes biases to arise especially for the more recent periods of analysis. These
more recent periods are important if assessing climate change effects on tree
growth, and it is therefore important to account for these limitations and
adapt sampling and analysis protocols.
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To use tree-rings in assessing the carbon dynamics of the world’s
forests, several changes in methods are required: sampling trees in more
‘normal’ forests (i.e., with less extreme climates) and following the natural
size-distribution of a species (cf. Nehrbass-Ahles et al., 2014), including non-
crossdatable samples in the analysis of trends, and applying several growth-
trend detection methods simultaneously (CHAPTER 4). Shifting to normal
forests will allow to infer conclusions on long-term growth changes over large
areas, while still allowing for climate reconstructions spanning more than a
century (Schongart et al., 2006), to several centuries (Dunwiddie & LaMarche,
1980). More emphasis is also needed on tropical tree-ring analysis, for instance
by focussing on species that are known to form annual rings (Zuidema et
al., 2012) or on widespread and abundant species (i.e., “hyperdominant”
species; Ter Steege et al., 2013). By sampling trees in size classes following
their natural distribution in the field, the effect of several (sampling) biases
can be avoided or at least reduced (Brienen et al., 2012a; Nehrbass-Ahles et al.,
2014). Standardising sampling designs would also allow the comparison of
growth changes between different species and sites, both within and across
forest biomes (e.g., CHAPTER 5). Samples that cannot be crossdated may yield
lower quality growth data, as wedging and missing rings cannot be detected
with certainty and dating of all rings in these samples is thus not absolute.
Therefore, these samples cannot be used for climatic reconstructions.
Notwithstanding, these samples represent ecologically relevant individuals —
those that show different or limited growth conditions — and including these
samples is therefore essential when assessing growth changes over time.
Finally, we showed that the choice of trend-detection method influences the
detection of trends (CHAPTER 4). Each of the methods assessed has specific
limitations that need to be accounted for when analysing trends in growth
(Table 4.2) and all depend of arbitrary decisions at some point in the analysis.
However, we also show that methods are often consistent in detecting trends
and we recommend combining methods for a robust analysis.
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6.6 Integrating approaches to assess tropical forest
changes

Tree-ring analysis in the tropics is still in in its early stages and only recently
more attention has been given to issues that may arise from sampling
design (Nehrbass-Ahles et al., 2014), biases related to the nature of tree-ring
data (Brienen et al., 2012a) and from the choice of trend-detection methods
(CHAPTER 4). Working with tree-rings in the tropics has its limitations,
some of which apply specifically to working in the tropics (e.g., only a subset
of species forms rings), whereas others apply to tree-ring analysis in general
(e.g., methodological limitations). Yet, in spite of the limitations, well-designed
tree-ring studies open a window to the past and provide long-term, species-
specific information on growth changes in tropical forests. Such long-term,
species-specific information is urgently needed if we wish to understand how
tropical forests are reacting to climatic changes. Finally, there are several
methods to detect (growth) changes in tropical forests (see Textbox 6.1), but
none provide a panacea for resolving the discussion whether tropical forests
are changing: all methods fill knowledge gaps while also having limitations.
Combining different methods may allow for a cross-validation of results and
tree-ring analysis can be used to place results in a long-term perspective. There
are several possibilities of combining the strengths of tree-ring analysis with
other existing methods, we will discuss four of them.

An essential first step, is to better understand the cycles of cambial
activity and wood growth (and anatomy) in tropical species. Studying intra-
annual changes in wood formation can for instance be done by taking periodic
wood samples using micro-cores (cf. Die et al., 2012; Pumijumnong & Buajan,
2012). These cycles form the basis to understand tree growth —and thus the basis
for tree-ring analysis — and are directly related to cycles of biomass increment
in forests. Thus, understanding the drivers of wood growth is key to better
understand the dynamics of biomass growth and storage in tropical forests.
Cycles of cambial activity and the drivers for its onset and variation need to
be studied in relation to fluctuations in local environmental conditions, e.g.,
precipitation (Die et al., 2012) and in tree phenology, e.g., leaf flushing (Wagner
et al., 2013). Phenology can be measured locally, by periodical registration of
leaf characteristics, or can be measured remotely, by relating it to remotely
sensed phenological indices, e.g., NDVI (Pennec et al., 2011). Furthermore,
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cambial activity variation should also be coupled to measurements of carbon
fluxes (Rocha et al., 2006; Babst et al., 2014b) (Belmecheri et al., 2014). For
instance using Eddy-covariance towers, see Textbox 6.1). Coupling cambial
activity, tree phenology and large scale analyses of carbon fluxes can be used
to better understand how carbon sequestration is related to cycles of wood
formation and its onset. Carbon sequestration of tropical forests may vary
strongly from year to year (Gatti et al., 2014) and tree-ring chronologies may
be used as proxy to reconstruct (variation in) carbon sequestration over time.
Additionally, a better understanding of the relationship between tree growth
and carbon sequestration helps interpreting and extrapolating findings on
long-term changes in tree growth (CHAPTER 5).

Second, tree-ring analysis can be used to put growth changes detected
in monitoring plots into a long-term context. Tree-ring analysis can provide
valuable insights on the climate sensitivity of tree growth (Brienen & Zuidema,
2006a; Vlam et al., 2014b) that can be used to explain growth changes found in
plots. Also, tree ages derived from rings can be used to assess whether large-
scale disturbances have taken place in an area (Baker et al., 2005; Vlam, 2014).
Such large scale disturbances may have occurred long before plots were installed
and, leaving an imprint on the dynamics of plots that may affect growth trends
detected in plot data (Wright, 2005) and from rings (Vlam, 2014). Identifying such
disturbances is thus important when interpreting detected changes. Indications
for such past disturbances can be derived from tree ages and its temporal and
spatial aggregation (Vlam, 2014), and when performed in or near monitoring
plots, can help identifying whether disturbance drives growth changes found in
plots. Data from monitoring plots can also be used to help interpret results from
rings, for instance, mortality and regeneration data from plots can be used to
assess the underlying mechanisms of several biases that may affect the detection
of growth trends (e.g., “juvenile selection” bias, CHAPTER 5).

Third, tree-ring analysis can be integrated to in situ experimental
approaches (e.g., rainfall exclusions, heating, CO, fertilisation; Table 6.2), to
provide a long-term baseline to which the effects of such experiments can be
tested. With this baseline, changes in growth rates of trees as a consequence
of the experimental treatment can be tested using rings. Likewise, the analysis
of isotopes in the wood can be used to assess the physiological consequences of
such experiments. For instance, analysis of ®C isotopes in rings can be used to
analyse changes in the intrinsic water use efficiency (WUE) of trees (Nock et al.,
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2011; van der Sleen, 2014) that are expected to occur in the drier experimental
conditions (Nepstad et al., 2007) or under the addition of CO, to the atmosphere
(Tollefson, 2013).

Finally, results from these different methods (i.e., tree-rings, plots,
remote sensing, etc.) need to be combined with modelling approaches to better
simulate climate change effects on tree growth. Growth data from tree-rings,
combined with the results from experimental approaches and plot data, can be
used to parameterize individual based models (Sterck & Schieving, 2011; Fyllas
et al., 2014) to simulate the (combined) effect of changes in precipitation, CO,
concentrations, temperature, and nutrients on the growth and survival of trees.
Such integrative approaches can also be used to assess large-scale responses of
tropical forests to climatic changese.g., using Dynamic Global Vegetation Models
(DGVMs; Sitch et al., 2008). For such large-scale approaches, the long-term and
species-specific growth data from tree rings may be very valuable, especially
if combined with information on physiological changes that is stored in the
wood (e.g., IWUE; Nock et al., 2011; van der Sleen, 2014). At the moment, most
DGVMs predict increases in the biomass of tropical forests as a consequence
of CO, fertilization (Sitch et al., 2008; Huntingford et al., 2013), thus suggesting
that tropical forests will act as carbon sinks in the coming century, therefore
mitigating climate change.

Detecting whether changes have or are taking place in tropical forest
growth is challenging (Bowman et al., 2013), and every method used to assess
these changes — tree-ring analysis, monitoring plots, etc. — has limitations
and biases (Phillips et al., 2004; Brienen et al., 2012a; Chambers et al., 2013).
Understanding the drivers of these changes is possibly even more challenging
— and arguably even more important — than only detecting them. We argue
that only by integrating approaches will it be possible to assess the causes of
recent changes in tropical forest growth and dynamics. Integrative approaches
are being applied in temperate forests (Girardin et al., 2008; Babst et al., 2014b;
Belmecheri et al., 2014), but are still lacking in the tropics. Ultimately, tree-ring
analysis can be used in these integrative approaches to place results from short-
term measurements and experiments into a long-term perspective.
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Chapter 6

Text box 6.1 — Methods to measure and monitor tropical forests

Tropical forests store and process large quantities of carbon (Bonan, 2008). Measuring this
carbon pool and assessing the divers of its dynamics is important to understand the role tropical
forests play in the earth’s carbon cycle and to assess whether and how tropical forests will react
to predicted climate changes in the future. The importance of understanding these dynamics
has led to the development and application of several methods to monitor and detect changes
in tropical forests. In this textbox we briefly introduce each method and its main products, and
discuss some of their variations. Figure 6.1 provides a schematic overview of the methods and
Table 6.2 an overview of their primary use, strengths and limitations.

1. Carbon flux measurements

The absorption and emission of carbon by tropical forests, and how it varies over time, can be
estimated by measuring the fluxes of carbon dioxide (CO,) and other gasses in the atmosphere
above these forests. Common methods of measuring CO, fluxes are Eddy-covariance towers
(Saleska et al., 2003), airborne CO, measurements (Gatti et al., 2014), and more recently satellite
based estimates of atmospheric CO, concentrations (Basu et al., 2013). The Eddy covariance
method measures vertical transport of CO, in the atmosphere above the forest canopy. Fluxes
are computed from three-dimensional measurements of air transport (using ultrasound
anemometers) combined with high-frequency sampling (5 to 10 s*) of fluctuations in carbon
dioxide concentrations. By accumulating these measurements, the general fluxes of carbon
dioxide of the forest (absorption and release) can be computed (usually done per 30 minute
intervals). Airborne measurements use small aircraft to take air sample profiles from just
above the forest canopy (~300m high) up to the mid troposphere, at ~9 km (Stephens et al.,
2007). The concentrations of CO, and other gases, such as carbon monoxide, are then analysed
in these air samples. Samples are taken on a monthly basis (Gatti ef al., 2014), and when
performed over different areas, such airborne measurements allow assessing carbon fluxes at
regional (ca. 10°-10° km?) to global scales (Stephens et al., 2007). Since 2009, a Japanese satellite
(GOSAT) tracks total column atmospheric CO, concentrations worldwide. These space-based
measurements can also be used to estimate CO, fluxes (Basu et al., 2013), have a large spatial
coverage and provide information not available from the sparse surface network, albeit with a
lower accuracy (Buchwitz et al., 2007).

2. Remote sensing

Remotely sensed measurements (i.e., from satellite instruments or from airplanes) can be used
to analyse vegetation cover and its changes, to assess the productivity of tropical forests and to
estimate forest cover biomass. Optical satellite observations have been used to determine the
area of land covered by tropical forests (Mayaux et al., 2013) and to detect forest disturbances
(Espirito-Santo et al., 2014)2014 and land-cover change (Hansen et al., 2013). By measuring
changes in certain spectral ranges (e.g., NDVI uses ‘greeness’ of images), satellite images can be
used to estimate photosynthetic activity of the vegetation and to assess seasonal and interannual
cycles of forest productivity (Brando et al., 2010). Using lasers to scan the earth surface, satellite
lidar (laser imaging, detection and ranging) has been used to measure canopy heights and
forest structure to estimate tropical forest above ground biomass globally (Drake et al., 2002;
Saatchi et al., 2011). Such lidar measurements can also be performed using small airplanes or
from the ground. Airborne lidar provides similar measurements as satellite lidar, but measures
smaller areas with much higher resolution (Asner et al., 2012). Ground-based lidar have only
more recently been used and provide measurements of the structure of forests from the ground
(Calders et al., 2014), allowing to build two- and three-dimensional models of the structure of the
forest. Remotely sensed data allow for estimating productivity and biomass of tropical forests
over large areas, but need to be calibrated with field data to be scaled up (Mascaro et al., 2011) and
are prone to several artefacts in measurements (Morton et al., 2014).
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3. Experimental approaches

Experiments allow to directly measure the effects of (expected) climatic changes on plant
processes and growth. Experimental studies on the level of leaves (Slot et al., 2014)2014 and
seedlings (Way & Oren, 2010) are relatively common and have provided a good understanding of
plant physiological responses (e.g., photosynthetic rates, respiration) to changing environmental
conditions, such as drought and increasing CO, concentrations (Huang et al., 2007). On the other
hand, manipulative experiments on the tree or community level - crucial to upscale leaf-level
responses and to understand forest-level changes — are rare (Zuidema et al., 2013). Examples
of such large-scale approaches in on tropical forest include experiments on: the effect of fire
(Brando et al., 2014), drought (Nepstad et al., 2007; da Costa et al., 2014) and nutrient addition
(Alvarez-Clare et al., 2013). Maintaining these experiments over several years to decades is crucial
to understand possible adaptations to and the long-term effects of different changing conditions
on (the growth of) plants. Integrating different effects will be even more interesting, as these
integrative effects on ecosystem level are unknown or have only poorly been studied (Zuidema et
al., 2013). Experiments for assessing the effects of CO -addition in humid tropical forests are on
the way (Tollefson, 2013) and will fulfil an important knowledge gap on topical forest responses
to higher CO, concentrations.

4. Forest monitoring plots

Monitoring plots are fixed forest areas in which diameter growth, mortality and regeneration
of all trees (above a diameter threshold) are monitored periodically, usually every one to five
years. In the tropics, these plots are usually ~1 hectare in size, but studies with larger plots also
exist (e.g., CTFS; Gourlet-Fleury et al., 2013). In many countries monitoring plots were initially
installed to measure forests for timber exploitation or to measure biodiversity but are now also
increasingly used to assess forest biomass stocks and growth. Most measurements in these plots
usually cover a few years (Lewis et al., 2009b) to a couple of decades (Gourlet-Fleury et al., 2013).
Plot data provide a complete assessment of changes in forests as they include growth, mortality
and regeneration of trees, but also register forest dynamics, such as disturbances or shifts in
species composition. Monitoring plots have been crucial for reporting changes in tropical forest
biomass, growth and dynamics (Phillips et al., 2002; Lewis et al., 2009a). However, due to their
relatively low measurement resolution, plot studies have so far contributed little to identify the
causes of the observed (biomass) changes, but see Clark and Clark (2011). More recently, different
plots have been united in large networks (e.g., AfriTron, CTFS) to assess changes in biomass over
large areas of forests and over longer periods of time (Phillips et al., 2008; Lewis et al., 2009b).

5. Tree-ring analysis

Tree-ring analysis is increasingly being used in tropical forests to measure the growth and ages of
tropical trees (Worbes, 2002; Rozendaal & Zuidema, 2010). Tree-ring data can be used for climate
reconstructions (Schongart et al., 2006), forest ecology (Worbes et al., 2003) and management
(Schoéngart, 2008). Tree-rings are formed (annually) by a subset of tropical tree species (~25 - 40%
of species form rings) and the annuality of ring formation needs to be ascertained, especially
when working with new species. Measuring tree-rings requires specialized knowledge on
wood anatomy, to identify the anatomical structures that demarcate ring boundaries. Although
restricted to the subset of species forming rings and requiring specialized knowledge, tree-ring
analysis is the only method that provides century-long growth data that cover relevant timespans
when assessing the effects of recent climatic changes on tropical trees (i.e., the last ~150 years,
since the industrial revolution). Tree-rings have been used to analyse growth changes in tropical
tree species (Rozendaal ef al., 2010a; Nock et al., 2011). Additionally, stable isotopes in the wood
of trees, can be used as archives of physiological (Nock et al., 2011) and environmental signals
(Brienen et al., 2012b). Isotope measurements can be used to provide a contextual information
for the growth changes detected from tree rings on the same trees (Nock et al., 2011; van der
Sleen, 2014).
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Text box 6.1 — Continued

6. Modelling approaches

Modelling approaches can be used to integrate results from forest monitoring, experiments, and
tree-rings to predict tree and forest responses to climatic changes over different temporal and
spatial scales. Different models exist that simulate growth and development on individual- or
species level (Sterck et al., 2006), that model the growth and development of populations (Uriarte
etal., 2012) or of entire ecosystems (Sitch et al., 2008). Individual level simulations can be used to
understand the carbon allocation in trees (Sterck & Schieving, 2011), to assess forest productivity
and its climatic drivers (Fyllas et al., 2014) and to predict how trees react to integrated effects of
climatic changes on plant growth (van Loon et al., 2014). Population level models can be used
to assess the demographic consequences of expected climatic changes, such as population
growth, changes in recruitment rates and expected tree lifespans. At ecosystem level, models
can integrate species traits with predicted climatic changes, to assess large-scale responses of
tropical forests to climate change (Huntingford et al., 2013; Fyllas et al., 2014).

Figure 6.1. Schematic overview of the most important methods used for measuring and monitoring
tropical forest biomass: 1. Carbon Flux Measurements; 2. Remote sensing techniques; 3. Experimental
approaches; 4. Forest Monitoring plots; 5. Tree-ring analysis and; 6. Modelling approaches. See Textbox
6.1 for further explanation of the models and Table 6.2 for an overview of their strengths and limitations.
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6.7 Changing tropical forest growth rates and biomass

One of the key results in this thesis are the growth reductions found for most of
the species analysed in CHAPTER 5. These long-term growth reductions may have
important demographic consequences for these species, potentially leading to
shifts in the species composition of tropical forests. These shifts may be already
happening in tropical forests (Laurance ef al., 2004b) and the lacking regeneration
observed for many of the species studied here (Vlam, 2014) also points in this
direction. Growth reductions indicate worsening growth conditions, possibly
reflecting the negative effect of temperature increases on tree growth. However,
other causes for these reductions cannot be excluded, such as recovery from large-
scale disturbances or (anthropogenic) changes in forest dynamics.

No strong growth changes were found when analysing aggregated
trends on site level and across sites: aggregated growth reductions were detected
for the Thai site and across sites but these reductions were weak (i.e., non-
conclusive). These findings do, however, contrast growth increase expected to
occur if tree growth is stimulated by increased ambient CO,. This discrepancy is
on the one hand rather surprising, considering that there are strong indications
that increased ambient CO, has led to higher intrinsic water-use efficiency in
tropical trees (Nock et al., 2011; Pefiuelas et al., 2011; van der Sleen, 2014). On
the other hand, in spite of the increased iWUE, no concurrent increases in tree
growth were observed in those studies. Additionally, free Air CO, Enrichment
(FACE) experiments under field conditions have shown that elevated CO,
initially stimulates growth, but that plants acclimate and growth increases
are not sustained (Norby, 2011). Furthermore, the additional photosynthetates
produced due to higher ambient CO, may not be invested in wood production,
but rather on non-structural carbon, reproduction or in growth of other plant
parts (Sala et al., 2012; AbdElgawad et al., 2014). Finally, accelerated growth may
also be inhibited by the negative effect of increased temperature on growth
(Feeley et al., 2011) or may be limited by nutrient availability, e.g. nitrogen of
phosphorus (Alvarez-Clare et al., 2013). Taken together, these results suggest that
a long-term CO -fertilization of the diameter growth of tropical trees is absent.
If growth of tropical forest trees is indeed decreasing — or at least not changing
— this implies that DGVM projections of the carbon dynamics of tropical forests
overestimate the carbon sink potential of these ecosystems (Sitch et al., 2008;
Huntingford et al., 2013).
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6.8 Outlook

Inthisthesiswe showed thattree-ring analysisis possible for several tree species
growing in a Central African wet tropical forest. The potential to use tree-ring
analysis to acquire lifetime growth data of trees seems to be considerable
throughout the tropics. These lifetime growth data were then used to show
that exploited volumes of timber for four tree species in Cameroon may not
be sustained in the following cutting cycle. Such calculations can be used as a
basis to implement more sustainable forest management practices in tropical
forests. Finally, we show that the growth rates for several species is declining
in tropical forests but that aggregated across sites no strong growth trends are
present.

If one message becomes clear from this thesis it is that long-term data
are crucial to enhance the management of tropical forests and to understand
long-term changes happening in these forests. Tropical forests are highly
complex ecosystems as they harbour a large amount of interacting tree species.
Analysing species-level changes in growth, survival and regeneration of trees
thus forms the basis to assess and interpret community-level changes. Such
species-level analysis are however rare. To our knowledge, only one study using
forest monitoring data has assessed these trends (Feeley ef al., 2011). Tree-
rings allow conducting species-specific and long-term assessments of growth
changes. Now that tropical tree-ring studies are becoming more common and
many tropical species are found to produce annual rings (Zuidema et al., 2012),
it is high time that more analyses of long-term growth trends are conducted and
published (Rozendaal et al., 2010a; Nock et al., 2011).

One of the most important finding of this thesis is that many tropical
species show long-term growth decreases. That species-level growth trends were
not reflected in the aggregated trends for all sites illustrates the importance
of assessing trends on both the level of species and sites. Several studies have
found long-term increases in intrinsic water-use efficiency of tropical trees, as a
responsetotheincreasing CO, concentrationsin theatmosphere. Theseincreases
should lead to an increase in photosynthesis (or a decrease in transpiration) that
could thus lead to growth increases in tropical trees. That increases in water-use
efficiency were not reflected in growth increases is surprising and suggest that
growth is limited by other factors than carbon availability. Additionally, these
results suggest that the commonly assumed growth increases of tropical forests
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may be incorrect, which could lead to erroneous predictions carbon dynamics of
tropical forest under climate change. There is a strong need to integrate research
approaches if we wish to assess the evidence for climate change effects on
tropical forests. A possible integrative approach is combining monitoring plot
and remotely sensed data with the long-term growth data from tree rings. Such
integrative approaches may be the best way forward to relate recent findings of
changes in forest growth and biomass to changes over the past centuries.
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Summary

Tropical forests cover only 7% of the earth’s land surface, but harbour almost
half of the world’s biodiversity. These forests also provide many ecosystem
services, such as the storage of carbon and the regulation of local and regional
climate, and many goods such as timber and fruits. Furthermore, tropical
forests contribute disproportionately to the global carbon cycle, storing an
estimated 25% of the carbon stocks on land and accounting for a third of the
terrestrial net primary productivity. Therefore, changes in forest cover or in
the net uptake or loss of carbon by forests directly influences the global carbon
cycle. Tropical forests are under increasing anthropogenic pressure and are
undergoing rapid changes due to deforestation, conversion to other land uses
and logging. Additionally, there is evidence that pristine and intact tropical
forests are undergoing changes due to the effects of climate change. Concerted
increases in biomass and tree growth have been found in studies monitoring
intact tropical forests, suggesting that they acted as considerable carbon sinks
over the past decades. On the other hand, decreasing or fluctuating forest
growth and biomass have also been noted. These different changes have been
attributed todifferentclimaticdrivers: growthincreases have been suggested to
arise from growth stimulation by increasing atmospheric CO, concentrations,
while growth decreases have been interpreted to reflect the limiting effects of
increased temperature on growth. As monitoring plots usually cover only a few
decades, it is still unclear whether these changes are pervasive or whether they
simply reflect the effect of short-term climatic fluctuations on tree growth.
Assessing whether changes have occurred over centennial scales is thus crucial
to understanding whether and how tropical forests are reacting to climatic
changes.

In this thesis we apply tree-ring analysis on a pantropical study to assess long-
term changes in growth of tropical forest trees. Tree-ring analysis was used
to measure long-term growth rates of ~1350 trees of different species coming
from three sites across the tropics. Trends in growth over the last two centuries
were then analysed using an established an a new trend-detection method.
Additionally, we applied the long-term growth data from rings to improve the
evaluation of forest management practices in Cameroon. All samples were
collected and measured within the TROFOCLIM project led by Pieter Zuidema.
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Summary

The project also includes two other PhD theses and sample collection was divided
among the three PhD projects and the three sites: in Bolivia (samples collected
by Peter van der Sleen), Cameroon (by me) and in Thailand (by Mart Vlam).

The main objectives of this thesis were: (1) to assess the potential for using tree-
rings in a wet tropical forest in Central Africa; (2) to project timber yields in
the next logging round for four Cameroonian tree species; (3) to evaluate the
sensitivity and accuracy of four commonly used methods to detect long-term
trends in tree-ring data; and (4) to detect whether growth rates of tropical forest
trees have changed over the past ~150 years.

In Chapter 2 of this dissertation, we evaluated whether growth rings are
formed annually in the wood of tree species growing under very high levels of
precipitation (>4000 mm) in an African tropical forest. For this purpose, we
assessed whether ring structures are formed in the wood of the 22 commercially
exploited tree species and found that ring structures are indeed formed by more
than half of these species (in 14 species), though with varying ring clarity. On
four species we proved the annual character of ring formation using radiocarbon
bomb-peak dating. That rings are formed under such high levels of precipitation
is surprising, as these conditions are considered improper to induce ring
formation. These results suggest that the potential of tree-rings analysis is more
or less similar across the tropics. Based on our results and that of other studies,
we estimate that tree rings can be used to measure tree growth and ages for
around a quarter to a third of tropical tree species.

Worldwide, over 400 million hectares of tropical forests are set aside for timber
production. Attaining sustainable use of these forests is very important, in the
light of the important role of tropical forests in retaining biodiversity and storing
carbon. Ensuring that timber species are not overexploited is key to ensure
that forest use is sustainable and entails finding a balance between economic
gains and the (ecological) sustainability of logging operations. In Chapter 3, we
integrated growth data from tree-rings with logging inventory data to forecast
whether timber yields can be sustained in the next harvest round for four timber
speciesin Cameroon. Under currentlogging practices, future logging yields were
predicted to reduce moderately to strongly for all species. These yield reductions
are worrisome for forest conservation, as loss of economic value may lead to
conversion of forests to other land uses. We recommend that such calculations
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are needed for more species and argue that these simulations should include the
effects of logging and eventual silvicultural measures on the growth and survival
of trees.

Lifetime tree growth data — as acquired by tree-ring analysis — contains long-
term trends in growth that reflect the ontogenetic development of an individual
or species, i.e., these data contains an age/size signal in growth. In Chapter 4 we
evaluate the sensitivity, accuracy and reliability to detect long-term trends in
growth of four methods that are commonly used to disentangle these age/size
trends from long-term growth trends. We applied these growth-trend detection
methods to measured growth data from tree rings and to simulated growth
trajectories on which increasing an decreasing trends were imposed. The results
revealed that the choice of method influences results of growth-trend studies.
We recommend applying two methods simultaneously when analysing long-
term trends — the Regional Curve Standardization and Size Class Isolation
— as these methods are complementary and showed the highest reliability to
detecting long-term growth changes.

In Chapter 5, we analysed long-term growth trends in tropical forest trees using
a pantropical approach applying the two recommended growth-trend detection
methods. We showed that growth rates for most of the 13 tropical tree species,
from the three sites across the tropics, decreased over the last centuries. These
species-level changes may have important demographic consequences and
may eventually lead to shifts in the species composition of tropical forests. We
found no strong growth changes when analysing trends aggregated per site or
across sites: only weak growth reductions were detected for the Thai site and
across sites. These findings contrast growth increases that would be expected if
tree growth is stimulated by increased ambient CO,. These growth reductions
suggest worsening growth conditions for several tropical tree species, and could
result from the negative effect of temperature increases on tree growth, or
reflect the effect of large-scale disturbances on these forests.

If one image becomes clear from this thesis it is that long-term data are crucial to
enhance the management of tropical forests and to quantify changes happening
in these forests. Tree-ring analysis provides this long-term perspective for
tree growth and is thus a great tool to evaluate changes in the growth of trees,
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including for tropical species. One of the most important finding of this thesis
is that many tropical species show long-term decreases in growth. These
results suggest that the commonly assumed growth increases tropical forests,
based on measurements over the last couple of decades, may be incorrect. This
discrepancy in results could have strong consequences, among others leading to
erroneous predictions of the carbon dynamics of tropical forests under future
climate change. Combining monitoring plot data (to analyse short-term changes
in growth and species composition) with remotely sensed data (to accurately
determine forest land cover) and with the long-term growth data from tree
rings is probably the best way forward to relate recent findings of short-term
changes in tree growth and forest biomass to changes over the past centuries.
Such integrative approaches are needed to better quantify and understand the
effects of climate change on tropical forests.
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Samenvatting

Tropische bossen bedekken slechts 7% van het landoppervlak op aarde maar
herbergen bijna de helft van de biodiversiteit. Ook verzorgen tropische bossen
ecosysteemdiensten zoals het opslaan van koolstof en regelen van lokale
klimaatcondities, en leveren ze verschillende goederen zoals hout en vruchten.
Daarnaast dragen ze onevenredig veel bij aan de wereldwijde koolstofcyclus.
Zo bevatten tropische bossen naar schatting 25% van de koolstofvoorraden op
het land en zijn ze verantwoordelijk voor één derde van totale netto primaire
productiviteit. Veranderingen in het bosareaal of in de netto opname of verlies
van koolstof door bossen heeft daarom directe invloed op de wereldwijde
koolstofcyclus, met mogelijke gevolgen voor klimaatsverandering.

Tropische bossen ondervinden steeds meer druk door menselijk handelen,
onder meer door ontbossing en houtkap. Daarnaast zijn er aanwijzingen dat
ongerepte en intacte tropische bossen veranderingen ondergaan als gevolg van
klimaatverandering. In studies waarin bospercelen periodiek worden gemeten,
zijn de groei van bomen en de totale boombiomassa per oppervlakte eenheid
toegenomen gedurende de laatste decennia. Dit wijst erop dat tropische bossen
grote hoeveelheden koolstof hebben opgeslagen in de afgelopen periode. Andere
studies hebben tegenstrijdige resultaten opgeleverd: een verlaging of fluctuatie
van boomgroei of biomassa in de loop van de tijd. Deze veranderingen in tropische
bossen worden toegeschreven aan verschillende klimatologische factoren: de
toename in groei en biomassa worden toegeschreven aan de verhoging van de
atmosferische CO -concentraties, terwijl groeivertraging gerelateerd wordtaan de
negatieve effecten van hogere temperatuur op boomgroei. Echter, omdat studies
met bospercelen slechts een paar decennia overbruggen is het nog onduidelijk of
dezeveranderingen het gevolg zijn van een geleidelijke verhoging van temperatuur
of CO,-concentraties of een weerspiegeling van de effecten van andere factoren
die op korte termijn boomgroei beinvloeden, zoals fluctuaties in klimaat. Om te
begrijpen of en hoe tropische bossen reageren op klimaatverandering is het dus
cruciaal om veranderingen in de dynamiek van die bossen te bestuderen op lange
termijn, dat wil zeggen gedurende enkele eeuwen.

In dit proefschrift gebruiken we jaarringanalyse om veranderingen in de groei
van tropisch bomen te reconstrueren gedurende de afgelopen 150 tot 250 jaar.
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Hiervoor maten we de jaarringen van 1350 bomen van verschillende soorten,
afkomstig uit drie locaties in de tropen. Groeiveranderingen werden vervolgens
geanalyseerd met behulp van zowel een bestaande als ook een nieuwe methode
om veranderingen te detecteren. Daarnaast gebruiken we de groeigegevens van
tropische bomen om de duurzaamheid van bosbeheer in Kameroen te bepalen.
Alle monsters zijn verzameld en gemeten binnen het TROFOCLIM project onder
leiding van Pieter Zuidema. Het project omvat ook twee andere proefschriften
en het bemonsteren van bomen werd verdeeld over de drie promotieprojecten
en de drie locaties: in Bolivia (monsters verzameld door Peter van der Sleen), in
Kameroen (door mij) en in Thailand (door Mart Vlam).

De doelstellingen van dit proefschrift waren: (1) het evalueren van het potentieel
voor het gebruik van jaarringmetingen in een nat tropisch bos in Centraal-
Afrika; (2) het bepalen van toekomstige houtopbrengsten voor vier Kameroenese
boomsoorten; (3) het evalueren van vier methodes die gebruikt worden om
geleidelijke groeiveranderingen te detecteren in jaarringdata; en (4) het bepalen
of de groei van tropische bomen is veranderd in de afgelopen ~ 150-250 jaar.

In hoofdstuk 2 van dit proefschrift hebben we onderzocht of er in het hout van
boomsoorten in een zeer nat Afrikaans tropisch bos jaarringen worden gevormd.
We deden onderzoek aan 22 boomsoorten die worden gekapt voor hardhout.
Ringstructuren worden gevormd door meer dan de helft van deze soorten, maar
de kwaliteit van de ringen varieerde aanzienlijk. Voor vier soorten hebben we
het jaarlijkse karakter van de ringformatie bewezen met behulp van de datering
van radioactief koolstof, met de zogeheten ‘bombpeak dating’. Dat jaarringen
worden gevormd in bomen die in zeer natte bossen groeien is verrassend en deze
resultaten suggereren dat er veel potentie is voor jaarringonderzoek, in zowel
redelijk droge als zeer natte tropische bossen. Op basis van onze resultaten en
die van andere studies, schatten we in dat jaarringanalyse mogelijk is voor één
vierde tot één derde van alle tropische boomsoorten.

Wereldwijd wordt meer dan 400 miljoen hectare tropisch bos gebruikt voor
houtproductie. Het duurzaam beheren van deze bossen is zeer belangrijk, onder
andere vanwege hun bijdrage aan het behoud van biodiversiteit en de opslag van
koolstof. Eén aspectvan duurzaam bosbeheer is het voorkomen van overexploitatie
van de commerciéle houtsoorten. Daarvoorishetnodig om een evenwicht tevinden
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tussen economische winst op korte termijn en de ecologische duurzaamheid van
houtkap op de lange termijn. In hoofdstuk 3 hebben we gegevens over boomgroei
die we verkregen op basis van jaarringmetingen gecombineerd met gegevens
van bosinventarisaties om de hoeveelheid hout te bepalen die tijdens de komende
oogstkan worden gerealiseerd. Onze berekeningen laten zien dat bij ongewijzigde
praktijk van houtkap, die toekomstige hoeveelheid hout sterk zal verminderen
voor de vier onderzochte soorten. Deze resultaten zijn zorgwekkend aangezien
het verlies van economische waarde van het bos kan leiden tot de conversie van
bos naar meer lucratief landgebruik. We bevelen aan dat vergelijkbare modellen
voor houtopbrengst worden opgesteld voor alle commerciéle houtsoorten in
Kameroen.

In hoofdstuk 4 evalueren we de gevoeligheid, nauwkeurigheid en
betrouwbaarheid van vier methoden die veelvoudig worden gebruikt om
veranderingen in boomgroei te achterhalen op basis van jaarringmetingen. Om
geleidelijke veranderingen in boomgroei te detecteren is het noodzakelijk om
rekening te houden met groeiveranderingen die plaatsvinden gedurende de
levensontwikkeling van een individu, de zogeheten ontogenetische groeitrend.
Er bestaan verschillende methodes die dit trachten te doen. Deze methodes
verschillen in aanpak en aannames, maar de gevolgen van methodekeuze op de
gedetecteerde groeiveranderingen is nog niet eerder getest. In dit hoofdstuk
hebben we de effecten van die methodes getest: we hebben vier veelgebruikte
methodes toegepast op zowel de gemeten groei van een boomsoort uit Thailand
als ook op gemodelleerde groei waarbij we groeivertragingen of —versnellingen
hadden gesimuleerd. Uit de resultaten bleek dat de keuze van de methode in
belangrijke mate de resultaten beinvloedt. Twee methoden komen als beste uit
de test: de ‘Regional Curve Standardisation’ en de ‘Size Class Isolation‘. Omdat
deze methoden complementair zijn en de hoogste betrouwbaarheid gaven raden
we aan om ze in het vervolg altijd toe te passen.

In hoofdstuk 5 hebben we veranderingen in boomgroei over de afgelopen 150
jaar geévalueerd. We deden dat voor 13 tropische boomsoorten, op drie locaties
(Bolivia, Kameroen en Thailand). Voor de meeste van de onderzochte soorten
vonden we dat groeisnelheden afgenomen zijn in de afgelopen eeuw. Deze
veranderingen op soortniveau kunnen belangrijke demografische gevolgen
hebben voor deze soorten en kunnen uiteindelijk leiden tot verschuivingen
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in de soortensamenstelling in de onderzochte bossen. Echter, we vonden
geen sterke groeiveranderingen als we alle soorten per locatie gezamenlijk
analyseerden: alleen zwak significante groei afnames zijn gedetecteerd. Deze
bevindingen contrasteren echter met de groeiversnelling die zou worden
verwacht als boomgroei in belangrijke mate wordt gestimuleerd door de
verhoogde atmosferische CO, concentraties. De gevonden groeivertragingen
suggereren juist verslechterende groeiomstandigheden voor enkele tropische
boomsoorten. Deze vertragingen zijn mogelijk het gevolg van het negatieve
effect van temperatuurstijgingen op boomgroei of van het herstel van deze
bossen na grootschalige verstoringen.

Als één beeld duidelijk wordt uit dit proefschrift, is het dat gegevens over de
groei van bomen over lange periodes cruciaal zijn om het beheer van tropische
bossen te verbeteren en om de veranderingen die in deze bossen plaatsvinden te
kwantificeren.Jaarringanalyselevertditlangetermijnperspectiefvoorboomgroei
en is een geweldig hulpmiddel om boomgroei veranderingen te evalueren, en
is ook toe te passen in de tropen. Een van de belangrijkste bevindingen van
dit proefschrift is dat de groeisnelheid van veel tropische boomsoorten over
de lange termijn afneemt. Deze resultaten zijn verrassend en suggereren dat
boomgroei beperkt wordt door andere factoren dan koolstofbeschikbaarheid.
Bovendien suggereren onze resultaten dat de algemeen aangenomen
groeitoename in tropische bossen, die gebaseerd zijn op groeimetingen over
slechts de laatste decennia, wel eens onjuist zou kunnen zijn. Dit kan grote
gevolgen hebben en kan onder meer leiden tot foutieve voorspellingen van de
koolstofdynamiek van deze bossen onder klimaatverandering. Het combineren
van bosinventarisatiestudies (voor korte termijn groeiveranderingen en
veranderingen in de soortensamenstelling), satelliet waarnemingen (‘remote
sensing’, voor nauwkeurige bepalingen van bosareaal) en de lange termijn
groeigegevens uit jaarringanalyse is waarschijnlijk de beste manier om de
recente bevindingen van veranderingen in de groeisnelheid van bomen en in
bosbiomassa te relateren aan veranderingen gedurende de afgelopen eeuwen.
Dergelijke integratieve benaderingen zijn essentieel om de effecten van
klimaatverandering op tropische bossen beter te kwantificeren en te begrijpen.
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