Archive

Archive for June, 2020

Serotiny: a review

June 9th, 2020 No comments

Here is a new review paper on serotiny in plants [1]. Serotiny refers to prolonged storage of seeds in woody structures (cones or fruits) on the mother plant for several growing seasons. This implies an accumulation of a canopy seed bank with seeds from different. Serotiny confer fitness benefits in environments with frequent crown-fires, as the heat of the fires opens the woody structures and thus seeds are dispersed in the post-fire bed (where resource are abundant and competition is low). There are other ways by which some cone/fruit can be opened (e.g., dry warm winds), but the number of seeds released and the chance of successful recruitment are much lower than in postfire conditions, and thus fire provides higher fitness benefits for serotinous plants than any other cue factor. This is why most serotinous plants occurs in ecosystems with frequent crown fires. Serotiny has been studied mainly in pines [2-4] and Proteaceae, but we know at least 12 families and more than 50 genera with serotinous species [1]. And there is a diversity of serotinous structures (cones and fruits) in different genera and families (Fig. 1).

Figure 1. A) Callitris (Actinostrobus) pyramidalis (Cupressaceae); B) Postfire Cupressus sempervirens (Cupressaceae); C) Cone of Pinus patula; D) Postfire cones of Pinus radiata; E) Folicles of Hakea cyclocarpa (Proteaceae); F) Hakea stenocarpa follicle; G) Follicles of H. platysperma; H) Xylomelum angustifolium (Proteaceae) follicle; I) Lambertia echinata (Proteaceae) follicle; J) Cone of Banksia lemanniana (Proteaceae); K) B. hookeriana burning; L) Postfire B. leptophylla cone; M) Cluster of capsules of Leptospermum spinescens (Myrtaceae), inset: seeds of Callistemon (Melaleuca) teretifolius; N) Elongated cluster of sessile capsules of Callistemon citrinus (Myrtaceae), + seeds of Callistemon (Melaleuca) teretifolius; O) Woody capsules of Eucalyptus todtiana (Myrtaceae), Inset: capsules of Angophora hispida (Myrtaceae); P) Spikes of Connomois parviflora (Restionaceae); Q) Protea burchellii (Proteaceae); R) fruits of Protea burchellii; S) Cone of Allocasuarina torulosus (Casuarinaceae); T) Cone of Isopogon trilobus (Proteaceae); U) Cones of Petrophile brevifolia; V) Seedlings from serotinous H. polyanthema, B. attenuata and B. hookeriana in litter microsite. For more details see [1].

References

[1] Lamont BB, Pausas JG, He T, Witkowski, ETF, Hanley ME. 2020. Fire as a selective agent for both serotiny and nonserotiny over space and time. Critical Rev. Plant Sci. [doi | pdf]

[2] Hernández-Serrano A, Verdú M, González-Martínez SC, Pausas JG. 2013. Fire structures pine serotiny at different scales. Am. J. Bot. 100: 2349-2356. [doi | amjbot | pdf | supp.]

[3] Hernández-Serrano A, Verdú M, Santos-Del-Blanco L, Climent J, González-Martínez SC, Pausas JG. 2014. Heritability and quantitative genetic divergence of serotiny, a fire-persistence plant trait. Ann. Bot. 114: 571-577. [doi | pdf | suppl.]

[4] Castellanos MC, González-Martínez S, Pausas JG. 2015. Field heritability of a plant adaptation to fire in heterogeneous landscapes. Mol. Ecol. 24, 5633-5642. [doi | pdf | suppl.]  

 

More on serotiny: Serotiny | Heritability of serotiny (1) | Heritability of serotiny (2): a molecular approach | Evolutionay fire ecology in pines