Skip to main content
Log in

Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Primers previously developed to amplify specific non-coding regions of the mitochondrial genome in Angiosperms, and new primers for additional non-coding mtDNA regions, were tested for their ability to direct DNA amplification in 12 conifer taxa and to detect sequence-tagged-site (STS) polymorphisms within and among eight species in Picea. Out of 12 primer pairs, nine were successful at amplifying mtDNA in most of the taxa surveyed. In conifers, indels and substitutions were observed for several loci, allowing them to distinguish between families, genera and, in some cases, between species within genera. In Picea, interspecific polymorphism was detected for four loci, while intraspecific variation was observed for three of the mtDNA regions studied. One of these (SSU rRNA V1 region) exhibited indel polymorphisms, and the two others (nad1 intron b/c and nad5 intron1) revealed restriction differences after digestion with Sau3AI (PCR-RFLP). A fourth locus, the nad4L-orf25 intergenic region, showed a multibanding pattern for most of the spruce species, suggesting a possible gene duplication. Maternal inheritance, expected for mtDNA in conifers, was observed for all polymorphic markers except the intergenic region nad4L-orf25. Pooling of the variation observed with the remaining three markers resulted in two to six different mtDNA haplotypes within the different species of Picea. Evidence for intra-genomic recombination was observed in at least two taxa. Thus, these mitotypes are likely to be more informative than single-locus haplotypes. They should be particularly useful for the study of biogeography and the dynamics of hybrid zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–f.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6a, b.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:331–338

    Google Scholar 

  • Bonen L, Williams K, Bird S, Wood C (1994) The NADH dehydrogenase subunit 7 gene interrupted by four group II introns in the wheat mitochondrial genome. Mol Gen Genet 244:81–89

    CAS  PubMed  Google Scholar 

  • Campbell DR (1991) Comparing pollen dispersal and gene flow in a natural population. Evolution 455:1965–1968

    Google Scholar 

  • Chandelier A, du Jardin P, Avril C, Pâques M (1999) Identification of mitochondrial plasmid-like DNAs in Picea abies (L.) Karst. Plant Cell Rep 18:841–847

    Article  CAS  Google Scholar 

  • Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    CAS  PubMed  Google Scholar 

  • DeVerno LL, Charest PJ, Bonen L (1993) Inheritance of mitochondrial DNA in the conifer Larix. Theor Appl Genet 86:383–388

    Google Scholar 

  • Duff RJ, Nickrent DL (1999) Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Am J Bot 86:372–386

    CAS  PubMed  Google Scholar 

  • Dumolin-Lapègue S, Pemonge M-H, Petit RJ (1998) Association between chloroplast and mitochondrial lineages in oaks. Mol Biol Evol 15:1321–1331

    PubMed  Google Scholar 

  • Fauron CMR, Moore B, Casper M (1995) Maize as a model of higher plant mitochondrial genome plasticity. Plant Sci 112:11–32

    Article  CAS  Google Scholar 

  • Fournier D, Perry DJ, Beaulieu J, Bousquet J, Isabel N (2002) Optimizing expressed sequence tag polymorphisms by single strand conformation polymorphism in spruces. For Genet 9:11–17

    Google Scholar 

  • Fowler DP (1987) The hybrid white × Sitka spruce: species crossability. Can J For Res 17:413–417

    Google Scholar 

  • Gugerli F, Sperisen C, Büchler U, Brunner I, Brodbeck S, Palmer JD, Qiu Y-L (2001a) The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Mol Phylogenet Evol 21:167–175

    Article  CAS  PubMed  Google Scholar 

  • Gugerli F, Sperisen C, Büchler U, Magni F, Geburek T, Jeandroz S, Senn J (2001b) Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) populations suggests a serious founder effect during postglacial re-colonization of the western Alps. Mol Ecol 10:1255–1263

    CAS  PubMed  Google Scholar 

  • Isoda K, Shiraishi S, Watanabe S, Kitamura K (2000) Molecular evidence of natural hybridization between Abies veitchii and A. homolepis (Pinaceae) revealed by chloroplast, mitochondrial and nuclear DNA markers. Mol Ecol 9:1965–1974

    Article  CAS  PubMed  Google Scholar 

  • Kubo T, Yamamoto MP, Mikami T (2000) The nad4L-orf25 gene cluster is conserved and expressed in sugar beet mitochondria. Theor Appl Genet 100:214–220

    Article  CAS  Google Scholar 

  • Kumar R, Lelu M-A, Small I (1995) Purification on mitochondria and mitochondrial nucleic acids from embryogenic suspension cultures of a gymnosperm, Larix × leptoeuropaea. Plant Cell Rep 14:534–538

    CAS  Google Scholar 

  • Laroche J, Bousquet J (1999) The evolution of angiosperm mitochondrial rps3 group II introns in perennial and annual taxa: substitutions, insertions-deletions and homology to nad5 intron 1. Mol Biol Evol 16:441–452

    CAS  PubMed  Google Scholar 

  • Laroche J, Li P, Maggia L, Bousquet J (1997) Molecular evolution of angiosperm mitochondrial introns and exons. Proc Natl Acad Sci USA 94:5722–5727

    CAS  PubMed  Google Scholar 

  • Latta RG, Mitton JB (2001) Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution 53:769–776

    Google Scholar 

  • Lonsdale DM, Brears T, Hodge TP, Melville SE, Rottmann WH (1988) The plant mitochondrial genome: homologous recombination as a mechanism for generating heterogeneity. Phil Trans R Soc Lond B 319:149–163

    CAS  Google Scholar 

  • Lu M-Z, Szmidt AE, Wang XR (1998) RNA editing in gymnosperms and its impact on the evolution of the mitochondrial coxI gene. Plant Mol Biol 37:225–234

    Article  CAS  PubMed  Google Scholar 

  • Lunt DH, Whipple LE, Hyman BC (1998) Mitochondrial DNA variable number of tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol 7:1441–1455

    Article  CAS  PubMed  Google Scholar 

  • McCauley DE (1997) The relative contributions of seed and pollen movement to the local genetic structure of Silene alba. J Hered 88:257–263

    Google Scholar 

  • Mitton JB, Andalora R (1981) Genetic and morphological relationships between blue spruce, Picea pungens, and Engelmann spruce, Picea engelmannii, in the Colorado Front Range. Can J Bot 59:2088–2094

    Google Scholar 

  • Mitton JB, Kreiser BR, Latta RG (2000) Glacial refugia of limber pine (Pinus flexilis James) inferred from the population structure of mitochondrial DNA. Mol Ecol 9:91–97

    Article  CAS  PubMed  Google Scholar 

  • Mohr S, Schulte-Kappert E, Odenbach W, Oettler G, Kück U (1993) Mitochondrial DNA of cytoplasmic male-sterile Triticum timopheevi: rearrangement of upstream sequences of the atp6 and orf25 genes. Theor Appl Genet 86:259–268

    CAS  Google Scholar 

  • Palmer JD (1985) Evolution of chloroplast and mitochondrial DNA in plants and algae. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum Press, New York, pp 131–240

  • Palmer JD, Adams KL, Cho Y, Parkinson L, Qiu Y-L, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA 97:6960–6966

    CAS  PubMed  Google Scholar 

  • Perron M, Bousquet J (1997) Natural hybridization between black spruce and red spruce. Mol Ecol 6:725–734

    Google Scholar 

  • Perron M, Perry DJ, Andalo C, Bousquet, J (2000) Evidence from sequence-tagged-site markers of a recent progenitor-derivative species pair in conifers. Proc Natl Acad Sci USA 97:11,331–11,336

    Article  Google Scholar 

  • Perrotta G, Regina TMR, Ceci LR, Quagliariello C (1996) Conservation of the organization of the mitochondrial nad3 and rps12 genes in evolutionarily distant angiosperms. Mol Gen Genet 251:326–337

    Article  CAS  PubMed  Google Scholar 

  • Perry DJ, Bousquet J (1998) Sequence-tagged site (STS) markers of arbitrary genes: development, characterization and analysis of linkage in black spruce. Genetics 149:1089–1098

    CAS  PubMed  Google Scholar 

  • Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci USA 94:9996–10,001

    CAS  PubMed  Google Scholar 

  • Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407

    Article  CAS  PubMed  Google Scholar 

  • Richardson BA, Bunsfeld SJ, Klopfenstein NB (2002) DNA from bird-dispersed seed and wind-disseminated pollen provides insights into postglacial colonization and genetic structure of whitebark pine (Pinus albicaulis). Mol Ecol 11:215–228

    Article  CAS  PubMed  Google Scholar 

  • Saville BJ, Kohli Y, Anderson JB (1998) MtDNA recombination in a natural populations. Proc Natl Acad Sci USA 95:1331–1335

    Article  CAS  PubMed  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474

    Article  Google Scholar 

  • Senjo M, Kimura K, Watano Y, Ueda K, Shimizu T (1999) Extensive mitochondrial introgression from Pinus pumila to P. parviflora var. pentaphylla (Pinaceae). J Plant Res 112:97–105

    CAS  Google Scholar 

  • Sinclair WT, Morman JD, Ennos RA (1999) The postglacial history of Scots pine (Pinus sylvestris L.) in western Europe: evidence from mitochondrial DNA variation. Mol Ecol 8:83–88

    Article  Google Scholar 

  • Soranzo N, Provan J, Powell W (1999) An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42:158–161

    Article  CAS  PubMed  Google Scholar 

  • Soranzo N, Alia R, Provan J, Powell W (2000) Patterns of variation at a mitochondrial sequence-tagged-site locus provides new insight into the postglacial history of European Pinus sylvestris populations. Mol Ecol 9:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Sperisen C, Büchler U, Gugerli F, Mátyás G, Geburek T, Vendramin GG (2001) Tandem repeats in plant mitochondrial genomes: application of the analysis of population differentiation in the conifer Norway spruce. Mol Ecol 10:257–263

    Article  CAS  PubMed  Google Scholar 

  • Strauss SH, Hong Y-P, Hipkins VD (1993) High levels of population differentiation for mitochondrial DNA haplotypes in Pinus radiata, muricata and attenuata. Theor Appl Genet 86:605–611

    Google Scholar 

  • Sutton BCS, Pritchard SC, Gawley JR, Newton CH, Kiss GK (1994) Analysis of Sitka spruce-interior spruce introgression in British Columbia using cytoplasmic and nuclear DNA probes. Can J For Res 24:278–285

    Google Scholar 

  • Taylor TMC (1959) The taxonomic relationship between Picea glauca (Moench) Voss and P. engelmannii Parry. Madrono 15:111–115

    Google Scholar 

  • Tsumura Y, Suyama Y (1998) Differentiation of mitochondrial DNA polymorphisms in populations of five Japanese Abies species. Evolution 52:1031–1042

    CAS  Google Scholar 

  • Wang X-Q, Tank DC, Sang T (2000) Phylogeny and divergence times in Pinaceae: evidence from three genomes. Mol Biol Evol 17:773–781

    CAS  PubMed  Google Scholar 

  • Wu J, Krutovskii KV, Strauss SH (1998) Abundant mitochondrial genome diversity, population differentiation and convergent evolution in pines. Genetics 150:1605–1614

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Plante and N.O. Tremblay (C.R.B.F., Univ. Laval) for valuable help in the laboratory, S. Boisclair and S. Senneville (C.R.B.F., Univ. Laval) for help with the collection of samples, and two anonymous reviewers for constructive comments and suggestions to improve the manuscript. This research was supported by grants from Fonds Québécois de la Recherche sur la Nature et les Technologies (F.Q.R.N.T.), the National Sciences and Engineering Research Council of Canada (N.S.E.R.C.), and the Canadian Forest Service (C.F.S.) to J. Bousquet, J. Beaulieu and N. Isabel, and an international fellowship from the Québec Ministry of Education to J.P. J.-C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bousquet.

Additional information

Communicated by D.B. Neale

About this article

Cite this article

Jaramillo-Correa, J.P., Bousquet, J., Beaulieu, J. et al. Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea. Theor Appl Genet 106, 1353–1367 (2003). https://doi.org/10.1007/s00122-002-1174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-002-1174-z

Keywords

Navigation