Skip to main content
Log in

Transcriptome of weeping pinyon pine, Pinus pinceana, shows differences across heterogeneous habitats

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Key message

We reconstructed the needle tissue Transcriptome of P. pinceana for individuals from distinct biogeographic regions across a temperature and precipitation gradient that represents its natural distribution. Gene expression analysis via RNA-Seq identified differential response to biotic stress.

Abstract

Phenotypic plasticity includes physiological traits affected by subtle changes in mRNA expression levels, causing different molecular phenotypes. We assessed the differential response to climate heterogeneity across the geographic range of Pinus pinceana G. Gordon & Glendinning. This pinyon pine shows a fragmented geographic distribution suggesting adaptation to the arid and extreme conditions of the eastern mountain slopes of the Chihuahuan desert. The geographic distribution of P. pinceana spans regions with significant variation in annual temperature and precipitation. We tested whether phenotypic divergence is supported by differences in expression profiles in P. pinceana mature trees along its natural distribution and corresponds to the changes in drought and other environmental stress. The reconstructed Transcriptome included 45,431 high-quality annotations derived from the needles of seven individuals across contrasting biogeographic and climatic localities. Trees from the driest regions shared active responses related to abiotic factors. The differential expression analysis identified intermediates and regulators of abiotic stress response for 26 genes, highlighting families involved in the environmental response to abiotic stress, and proteins linked to up-regulated responses, such as LRR receptor-like serine/threonine-protein kinase and L-type lectin receptor kinases (LecRK), directly related to pathogens. When Chihuahuan desert samples were compared with arboretum samples, we found differential expression of a regulator of root morphogenesis, cysteine-rich receptor-like protein kinase (CRK28), which could relate to differential absorption in drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The RNA reads and the de novo Transcriptome assemblies are available in NCBI via Bioproject PRJNA63711. The code used is available at https://gitlab.com/lcorona/transcriptome_of_weeping_pinyon_pine.git.

References

  • Ackermann M, Sikora-Wohlfeld W, Beyer A (2013) Impact of natural genetic variation on gene expression dynamics. PLOS Genetics 9(6):1003514

    Article  CAS  Google Scholar 

  • Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact 21(5):507–517

    Article  CAS  PubMed  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Akbudak MA, Yildiz S, Filiz E (2020) Pathogenesis related protein-1 (PR-1) genes in tomato (Solanum lycopersicum L.) bioinformatics analyses and expression profiles in response to drought stress. Genomics 112(6):4089–4099

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Yépiz JC, Cueva A, Dov M, Teece M, Yepez EA (2014) Ontogenetic resource-use strategies in a rare long-lived cycad along environmental gradients. Conserv Physiol 2:1–12

    Article  Google Scholar 

  • Amman GD (1982) Characteristics of mountain pine beetles reared in four pine hosts. Environ Entomol 11 3(1):590–593

    Article  Google Scholar 

  • Baker EA, Wegrzyn JL, Sezen UU et al (2018) Comparative transcriptomics among four white pine species. G3 8(5):1461–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayless AM, Nishimura MT (2020) Enzymatic functions for Toll/interleukin-1 receptor domain proteins in the plant immune system. Front Genet 11:539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birol I, Raymond A, Jackman SD et al (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29(12):1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich A et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527

    Article  CAS  PubMed  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63(6):625–644

    Article  Google Scholar 

  • Brodribb TJ, McAdam SA, Jordan GJ, Martins S (2014) Conifer species adapt to low-rainfall climates by following one of two divergent pathways. PNAS 111(40):14489–14493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Jiao Y, Miao R, Tian R, Liang Y, Qiao N (2020) Exploring differentially expressed genes of microspore embryogenesis under heat stress in sweet pepper. Afr J Biotech 19(9):661–674

    Article  CAS  Google Scholar 

  • Cho SM, Lee H, Jo H, Kang Y, Park H, Lee J (2018) Comparative transcriptome analysis of field- and chamber-grown samples of Colobanthus quitensis (Kunth) Bartl, an Antarctic flowering plant. Sci Rep 8(1):11049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Corcuera L, Gil-Pelegrin E, Notivol E (2012) Aridity promotes differences in proline and phytohormone levels in Pinus pinaster populations from contrasting environments. Trees 26:799–808

    Article  CAS  Google Scholar 

  • Córdoba-Rodríguez D, Vargas-Hernández JJ, López-Upton J, Muñoz-Orozco A (2011) Crecimiento de la raíz en plantas jóvenes de Pinus pinceana Gordon en respuesta a la humedad del suelo. Agrociencia 45:493–506

    Google Scholar 

  • Correia MJ, Osório ML, Osório J, Barrote I, Martins M, David MM (2006) Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. Environ Exp Bot 58(1):75–84

    Article  CAS  Google Scholar 

  • Cosio C, Dunand C (2009) Specific functions of individual class III peroxidase genes. J Exp Bot 60(2):391–408

    Article  CAS  PubMed  Google Scholar 

  • Davies JM, Stacey AJ, Gilligan CA (1999) Candida albicans hyphal invasion: thigmotropism or chemotropism? FEMS Microbiol Lett 171(2):245–249

    Article  CAS  PubMed  Google Scholar 

  • Eckert AJ, Shahi H, Datwyler SL, Neale DB (2012) Spatially variable natural selection and the divergence between parapatric subspecies of lodgepole pine (Pinus contorta, Pinaceae). Am J Bot 99:1323–1334

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16(1):157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ESRI Environmental Systems Research (2011) ArcGIS Desktop: Release 10. Redlands, CA

  • Eitas TK, Zachary L, Nimchuk J, Dangl L (2008) Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. PNAS 105(17):6475–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32(19):3047–3048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farjon A (1996) Biodiversity of Pinus (Pinaceae) in Mexico: Speciation and Palaeo-Endemism. Bot J Linn Soc 121(4):365–384

    Google Scholar 

  • Farjon A, Perez de la Rosa JA, Styles BT (1997) A Field Guide to the Pines of Mexico and Central America. Royal Botanic Gardens. Kew Richmon 

  • Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Gao N, Wadhwani P, Mühlhäuser P, Liu Q, Riemann M, Ulrich AS, Nick P (2016) An antifungal protein from Ginkgo biloba binds actin and can trigger cell death. Protoplasma 253(4):1159–1174

    Article  CAS  PubMed  Google Scholar 

  • Gang DR, Kasahara H, Xia ZQ, Vander Mijnsbrugge K, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274(11):7516–7527

    Article  CAS  PubMed  Google Scholar 

  • Gilbert D (2013) Gene-omes built from mRNA seq not genome DNA. 7th annual arthropod genomics symposium. Notre Dame

  • Gognies S, Belarbi A, Barka E (2001) Saccharomyces cerevisiae, a potential pathogen towards grapevine, Vitis vinifera. FEMS Microbiol Ecol 37(2):143–150

    Article  CAS  Google Scholar 

  • González-Elizondo MS, González-Elizondo M, Tena-Flores JA, Ruacho-González L, López-Enríquez LI (2012) Vegetación de La Sierra Madre Occidental, México: Una Síntesis. Acta Botánica Mexicana 100:351–403

    Google Scholar 

  • Gonzalez-Ibeas D, Martinez-Garcia PJ, Famula RA, Delfino A, Stevens KA, Loopstra CA, Langley CH, Neale BD, Wegrzyn JL (2016) Assessing the gene content of the megagenome: sugar pine (Pinus lambertiana). G3 6(12):3787–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag SNPs at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M (2013) De novo transcript sequence reconstruction from RNA-Seq using the trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Hart AJ, Ginzburg S, Xu M, Fisher CR, Rahmatpour N, Mitton JB, Paul R, Wegrzyn JL (2020) EnTAP: bringing faster and smarter functional annotation to non-model eukaryotic transcriptomes. Mol Ecol Res 20:591–604

    Article  CAS  Google Scholar 

  • Henriques D, Wallberg A, Chávez-Galarza J et al (2018) Whole genome SNP-associated signatures of local adaptation in honeybees of the Iberian Peninsula. Sci Rep 8:11145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hicke JA, Logan JA, Powell J, Ojima DS (2006) Changing temperatures influence suitability for modeled mountain pine beetle (Dendroctonus ponderosae) out breaks in the western United States. J Geophys Res 111:G02019

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • Hok S, Danchin EG, Allasia V, Panabières F, Attard A, Keller H (2011) An Arabidopsis (malectin like) leucine rich repeat receptor like kinase contributes to downy mildew disease. Plant Cell Environ 34:1944–1957

    Article  CAS  PubMed  Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, Von Mering C, Bork P (2018) EggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47(D1):D309–D314

    Article  PubMed Central  CAS  Google Scholar 

  • Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. PNAS 96(23):13583–13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones P, Binns D, Chang HY et al (2014) InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics 30(9):1236–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Camera S, Balagué C, Göbel C, Geoffroy P, Legrand M, Feussner I, Roby D, Heitz T (2009) The Arabidopsis patatin-like protein 2 (PLP2) plays an essential role in cell death execution and differentially affects biosynthesis of oxylipins and resistance to pathogens. Mol Plant Microbe Interact 22(4):469–481

    Article  PubMed  CAS  Google Scholar 

  • Ledig FT, Capo-Arteaga MA, Hodgskiss PD, Sbay H, Flores-Lopez CM. Conkle T, Bermejo-Velazquez B (2001) Genetic Diversity and the Mating System of a Rare Mexican Pinon, Pinus pinceana, and a Comparison with Pinus maximartinezii (Pinaceae). Am J Botany 88(11):1977–1987

    Article  CAS  Google Scholar 

  • Lin JS, Huang XX, Li Q, Cao Y, Bao Y, Meng XF, Li YJ, Fu C, Hou BK (2016) UDP glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. Plant J 88:26–42

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Kuo CCh, Yang IC et al (2018) MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis. Front Plant Sci 9:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Zhang H, Yang Y et al (2008) Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol 68:17–30

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. PNAS 98(8):4782–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malusa J (1992) Phylogeny and biogeography of the Pinyon Pines (Pinus Subsect. Cembroides) . Syst Bot 17(1):42–66

    Article  Google Scholar 

  • Martínez-Ávalos JG, Sánchez-Castillo C, Martínez-Gallegos R, Sánchez-Ramos G, Trejo I, Mora-Olivo A, Alanis E (2015) Primer Registro de Pinus pinceana (Pinaceae) Para Tamaulipas: Aspectos Ecológicos y Estructurales. Bot Sci 93(2):357–360

    Article  Google Scholar 

  • Martiñón-Martínez RJ, Vargas-Hernández J, López-Upton J, Gómez-Guerrero A, Vaquera-Huerta H (2010) Respuesta de Pinus pinceana Gordon a estrés por sequía y altas temperaturas. Rev fitotec Mex 33(3):239–248

    Google Scholar 

  • McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739

    Article  PubMed  Google Scholar 

  • Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIR-NBS Proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J 32(1):77–92

    Article  CAS  PubMed  Google Scholar 

  • Molina-Freaner F, Delgado P, Piñero D, Perez-Nasser N, Alvarez-Buylla E (2001) Do rare pines need different conservation strategies? Evidence from three Mexican species. Can J Bot 79(2):131–138

    Google Scholar 

  • Montes JR, Peláez P, Willyard A, Moreno-Letelier A, Piñero D, Gernandt DS (2019) Phylogenetics of Pinus subsection Cembroides Engelm. (Pinaceae) inferred from low-copy nuclear gene sequences. Syst Bot 44(3):501–518

    Article  Google Scholar 

  • Morrone JJ, Escalante T, Rodríguez-Tapia G (2017) Mexican biogeographic provinces: Map and shapefiles. Zootaxa 4277(2):277–279

    Article  PubMed  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  CAS  PubMed  Google Scholar 

  • Neale DB, Wegrzyn JL, Stevens KA et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15(3):R59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164(4):1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D et al (2015) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44(D1):D733–D745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortiz-Medrano A, Scantlebury DP, Vázquez-Lobo A, Mastretta-Yanes A, Piñero D (2016) Morphological and niche divergence of pinyon pines. Ecol Evol 6:2886–2896

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelagio-Flores R, Muñoz-Parra E, Barrera-Ortiz S et al (2020) The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses. Planta 251:2

    Article  CAS  Google Scholar 

  • Perera D, Magbanua ZV, Thummasuwan S, Mukherjee D, Arick M, Chouvarine P, Nairn CJ, Schmutz J, Grimwood J, Dean J, Peterson DG (2018) Exploring the loblolly pine (Pinus taeda L.) genome by BAC sequencing and Cot analysis. Gene 663:165–177

    Article  CAS  PubMed  Google Scholar 

  • Petit P, Granier T, d’Estaintot BL, Manigand C, Bathany K, Schmitter JM, Lauvergeat V, Hamdi S, Gallois B (2007) Crystal structure of grape Dihydroflavonol 4-Reductase, a key enzyme in flavonoid biosynthesis. J Mol Biol 368:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek PA (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25(8):459–467

    Article  PubMed  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Article  Google Scholar 

  • Reiser J, Muheim A, Hardegger M, Frank G, Fiechter A (1994) Aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. Gene cloning, sequence analysis, expression, and purification of the recombinant enzyme. J Biol Chem 269(45):28152–28159

    Article  CAS  PubMed  Google Scholar 

  • Roden J, Kahmen A, Buchmann N, Siegwolf R (2015) The enigma of effective path length for 18O enrichment in leaf water of conifers. Plant Cell Environ 38(12):2551–2565

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sanchez E, Rodriguez-Gomez F, Sosa V (2012) Refugia and geographic barriers of populations of the desert poppy, Hunnemannia fumariifolia (Papaveraceae). Org Divers Evol 12(2):133–143

    Article  Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Ann Rev Ecol Syst 17:667–693

    Article  Google Scholar 

  • Shalev TJ, Yuen MMS, Gesell A, Yuen A, Russell JH, Bohlmann J (2018) An annotated transcriptome of highly inbred Thuja plicata (Cupressaceae) and its utility for gene discovery of terpenoid biosynthesis and conifer defense. Tree Genet Genomes 14(3):35

    Article  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Over expression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotech 21(1):81–85

    Article  CAS  Google Scholar 

  • Schilmiller AL, Stout J, Weng JK, Humphreys J, Ruegger MO, Chapple C (2009) Mutations in the cinnamate 4 hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J 60:771–782

    Article  CAS  PubMed  Google Scholar 

  • Stockwell D (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Int J G I Sc 13(2):143–158

    Article  Google Scholar 

  • Sun CH, Yang CY, Jason TC (2018) Molecular identification and characterization of hydroxycinnamoyl transferase in tea plants (Camellia sinensis L.). Int J Mol Sci 19(12):3938

    Article  PubMed Central  Google Scholar 

  • Tang W, Peng X, Newton RJ (2005) Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase. Plant Physiol Biochem 43(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Trabucco A, Zomer RJ (2009) Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database. CGIAR Consortium for Spatial Information. Published Online. Accessed on 24 Mar 2020

  • UniProt Consortium (2018) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47(D1):D506–D515

    Article  CAS  Google Scholar 

  • Wang Y, Bouwmeester K, Beseh P, Shan W, Govers F (2014) Phenotypic analyses of Arabidopsis T-DNA insertion lines and expression profiling reveal that multiple L-type lectin receptor kinases are involved in plant immunity. Mol Plant Microbe Interact 27(12):1390–1402

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW, Zhou JM, Chai J (2019) Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364:(6435)

    Article  Google Scholar 

  • Wang XC, Wu J, Guan ML, Zhao CH, Geng P, Zhao Q (2020) Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J 101:637–652

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM (2018) BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 35(3):543–548

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2016) Ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Zhang J, Wang F, Liang F et al (2018) Functional analysis of a pathogenesis-related thaumatin-like protein gene TaLr35PR5 from wheat induced by leaf rust fungus. BMC Plant Biol 18:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Duvaux L, Ren G, Zhang L, Savolainen O, Liu J (2017) Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity 118(3):211–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Eguiarte and Jessica Gunoskey for valuable suggestions on data analysis and comments on earlier versions of the manuscript; the staff of the Herbarium of the UACh, especially Dr. E. Guizar Nolazco for permission to collect samples in the Pinetum Maximino Martínez; C. Bautista, E. García-Morales, D. Gernandt, S. Gonzalez, A. Moreno-Letelier, R. Salas-Lizana, A. Vázquez-Lobo, and A. Villarruel for fieldwork assistance; A. Gamboa de Buen, M. Garciadiego, M. López, and S. Shishkova for the RNA extraction training; P. Peláez, A. Trouern-Trend, and S. Zaman for bioinformatic assistance; and the Institute for Systems Genomics, Computational Biology Core, UCONN for access to both software and hardware. This work constitutes a partial fulfillment of the requirements for the Ph.D. degree at the Posgrado de Ciencias Biológicas at the Universidad Nacional Autónoma de México (UNAM) for LFC.

Funding

Fieldwork was supported by PAPIIT-DGAPA UNAM grant IN209816 to David Gernandt. Lab processing and sequencing was financed by Instituto de Ecología (DP) and CONACYT financial scholarship number 449615 to LFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Piñero.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by J. Hormaza.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueroa-Corona, L., Delgado Valerio, P., Wegrzyn, J. et al. Transcriptome of weeping pinyon pine, Pinus pinceana, shows differences across heterogeneous habitats. Trees 35, 1351–1365 (2021). https://doi.org/10.1007/s00468-021-02125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02125-8

Keywords

Navigation