Skip to main content

Advertisement

Log in

A review of the knowledge of Hartwegʼs Pine (Pinus hartwegii Lindl.): current situation and the need for improved future projections

  • Review
  • Published:
Trees Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Key message

A systematic review from 1962 to August 2021 summarizes the research on Hartwegʼs pine (Pinus hartwegii). We identify research gaps and propose new direction for future studies and discuss the main study topics.

Abstract

Hartwegʼs pine (Pinus hartwegii Lindl.) is a high-value timber species adapted to the harsh alpine environment of high-elevation mountains (3000–4200 m) in Mexico, where it provides a wide array of ecosystem services to society. However, this species is currently facing temperature increases associated with global warming, with models predicting upward altitudinal shifts to maintain suitable growth conditions. Here, we present a systematic review of Hartwegʼs pine to establish current knowledge, identify research gaps, and indicate directions for future studies. This search recovered 196 scientific references from 1962 to August 2021, which were classified into 21 research topics. References to Hartwegʼs pine increased considerably during the period from 2000 to 2021, representing 77% of the total publications. Most of the references were focused on the management of the species (n = 89) and its relationships with climate change (n = 49). Fewer references were focused on human impacts on the species, taxonomy, and systematics, as well as biogeochemical and hydrological cycles, phenology, and evolution. Most of the study areas were in the Trans-Mexican Volcanic Belt, such as in Izta-Popo National Park, Cofre de Perote National Park, the Nevado de Toluca Flora and Fauna Protection Area, and Cumbres del Ajusco National Park. These results highlight the incipient knowledge that we have about population genetics, phenotypic plasticity, physiology, biotic interactions and about of the specific environmental conditions where P. hartwegii populations develop, which limits our capacity to understand how this species will respond to global warming and whether there are risks to the persistence of these forests and the ecosystem services they provide, both to local human populations and those located farther down the mountain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The authors confirm that data supporting findings in this study are available within the article (and/or) its supplementary materials. Interested readers to other materials should request them from the corresponding author (MPS).

References

  • Acosta M, Carrillo F, Delgado D, Velasco E (2014) Establecimiento de parcelas permanentes para evaluar impactos del cambio climático en el Parque Nacional Izta-Popo. Rev Mex Cien For 5(26):6–29. https://doi.org/10.29298/rmcf.v5i26.287

    Article  Google Scholar 

  • Alanís-Rodríguez E, Jiménez-Pérez J, Valdecantos-Dema A, Pando-Moreno M, Aguirre-Calderón OA, Treviño-Garza EJ (2011) Caracterización de la regeneración leñosa post-incendio de un ecosistema templado del parque ecológico Chipinque, México. Rev Chapingo Ser Cienc For y del Ambient 17(1):31–39. https://doi.org/10.5154/r.rchscfa.2010.05032

    Article  Google Scholar 

  • Alfaro-Ramírez FU, Arredondo-Moreno JT, Pérez-Suárez M, Endara-Agramont AR (2017) Pinus hartwegii Lindl. treeline ecotone: structure and altitudinal limits at Nevado de Toluca. Mexico Rev Chapingo Ser Cienc For y del Ambient 23:261–273. https://doi.org/10.5154/r.rchscfa.2016.10.055

    Article  Google Scholar 

  • Alfaro-Ramírez FU, Ramírez-Albores JE, Vargas-Hernández JJ, Franco-Maass S, Pérez-Suárez M (2020) Potential reduction of Hartweg´s Pine (Pinus hartwegii Lindl.) geographic distribution. PLoS One 15(2):e0229178. https://doi.org/10.1371/journal.pone.0229178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Almeida L, Cleef AM, Herrera A, Velázquez A, Luna I (1994) El zacatonal alpino del volcán Popocatépetl, México, y su posición en las montañas tropicales de América. Phytocoenologia 22:391–436. https://doi.org/10.1127/phyto/22/1994/391

    Article  Google Scholar 

  • Almeida-Leñero L, Giménez de AJ, Cleef AM, González TA (2004) Las comunidades vegetales del zacatonal alpino de los volcanes Popocatépetl y Nevado de Toluca, Región Central de México. Phytocoenologia 34:91–132. https://doi.org/10.1127/0340-269X/2004/0034-0091

    Article  Google Scholar 

  • Alvarado-Rosales D, de Bauer LI (1991) Ataque de Lophodermium sp. en poblaciones naturales de Pinus hartwegii de el Ajusco, México, bajo el efecto de gases oxidantes. Micol Neotrop Apl 4:99–109

    Google Scholar 

  • Andrade V, Cibrián D (1981) Evaluación de efectos de muérdago enano, Arceuthobium globosum Hawks. y Wiens y A. vaginatum Willd., en rodales de Pinus hartwegii Lind. Rev Chapingo 29–30:6–15

  • Arceo RE, Cibrian TD (1980) Evaluación de los factores de mortalidad en la producción del área semillera de San Juan Tetla, Puebla. Rev Chapingo 23-24:11–17

    Google Scholar 

  • Argüelles-Moyao A, Garibay-Orijel R (2018) Ectomycorrhizal fungal communities in high mountain conifer forest in central Mexico and their potential use in the assisted migration of Abies religiosa. Mycorrhiza 28:509–521. https://doi.org/10.1007/s00572-018-0841-0

    Article  PubMed  Google Scholar 

  • Arriaga L, Gómez L (2004) Posibles efectos del cambio climático en algunos componentes de la biodiversidad de México. In: Martínez J, Fernández A (eds) Cambio climático: una visión desde México. INECC, pp 255–265

    Google Scholar 

  • Arteaga-Martínez B, Moreno-Zárate C (2006) Los hongos comestibles silvestres de Santa Catarina del Monte, Estado de México. Rev Chapingo Ser Cienc For y del Ambient 12:125–131

    Google Scholar 

  • Arzate-Fernández AM, Gutiérrez-González G, Heredia-Bobadilla RL (2016) Diversidad genética de dos especies de coníferas en el Nevado de Toluca: una alternativa de conservación. Universidad Autónoma del Estado de México, Toluca

    Google Scholar 

  • Ávila-Flores DY, González-Tagle MA, Jiménez-Pérez J, Aguirre-Calderón OA, Treviño-Garza EJ, Vargas-Larreta B (2012) Estructura de rodales de Pinus hartwegii afectados por incendios utilizando parámetros de vecinidad en la Sierra Madre Oriental, México. Trop Subtrop Agroecosyst 15:377–387

    Google Scholar 

  • Beaman JH (1962) The timberlines of Iztaccíhuatl and Popocatepetl, Mexico. Ecology 43:377–385. https://doi.org/10.2307/1933367

    Article  Google Scholar 

  • Billings RF, Clarke SR, Espino-Mendoza V, Cordón CP, Meléndez FB, Ramón CJ, Baeza G (2004) Bark beetle outbreaks and fire: a devastating combination for Central America’s pine forests. Unasylva 55:15–21

    Google Scholar 

  • Biondi F, Galindo I, Gavilanes JC, Elizalde A (2003) Tree growth response to the 1913 eruption of volcan de Fuego de Colima, Mexico. Quat Res 59:293–299. https://doi.org/10.1016/S0033-5894(03)00034-6

    Article  Google Scholar 

  • Biondi F, Hartsough PC, Estrada IG (2005) Daily weather and tree growth at the tropical treeline of North America. Arct Antarct Alp Res 37:16–24. https://doi.org/10.1657/1523-0430(2005)037[0016:DWATGA]2.0.CO;2

    Article  Google Scholar 

  • Buendía-Rodríguez E, Alanís-Rodríguez E, Aguirre-Calderón OA, Treviño-Garza EJ, Flores-Ayala E, Carrillo-Anzures F (2018) Efecto de la exclusión de un área natural protegida en la composición y estructura arbórea. Rev Mex Cienc Agr 9(5):981–992. https://doi.org/10.29312/remexca.v9i5.1506

    Article  Google Scholar 

  • Calderón G, Rzedowski J (2005) Flora fanerogámica del Valle de México. CONABIO-Instituto de Ecología A.C.

    Google Scholar 

  • Capó MA, Newton M (1991) Survival and growth of five species of Pinus seedlings after different approaches to competition control: “bridging” studies between Oregon and Mexico. New For 5:219–238

    Google Scholar 

  • Carrillo A, Ávila J (1979) Colecta y rendimiento de semillas de coníferas (Estimación en función de peso de conos). Rev Cienc For 4(20):13–43

    Google Scholar 

  • Carrillo F, Acosta M, Jiménez CR, González L, Etchevers JD (2016) Ecuaciones alométricas para estimar la biomasa y el carbono de la parte aérea de Pinus hartwegii en el Parque Nacional Ixta-Popo, México. Rev Mex Cienc Agric 7(3):681–691

    Google Scholar 

  • Cejudo-Espinosa E, Deloya C (2005) Coleóptera necrófilos del bosque de Pinus hartwegii del Nevado de Toluca, México. Fol Entomol Mex 44(1):67–73

    Google Scholar 

  • Challenger A (1998) Utilización y conservación de los ecosistemas terrestres de México; pasado, presente y futuro. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad

    Google Scholar 

  • Challenger A, Soberón J (2008) Los ecosistemas terrestres. In: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (ed) Capital natural de México, vol I. Conocimiento actual de la biodiversidad, México, pp 87–108

    Google Scholar 

  • Chansler JF (1967) Biology and life history of Dendroctonus adjunctus (Coleoptera: Scolytidae). An Entomol Soc Am 60:760–767. https://doi.org/10.1093/aesa/60.4.760

    Article  Google Scholar 

  • Chávez-Salcedo LF, Queijeiro-Bolaños ME, López-Gómez V, Cano-Santana Z, Mejía-Recamier BE, Mojica-Guzmán A (2018) Contrasting arthropod communities associated with dwarf mistletoes Arceuthobium globosum and A. vaginatum and their host Pinus hartwegii. J For Res 29(5):1351–1364. https://doi.org/10.1007/s11676-017-0544-y

    Article  CAS  Google Scholar 

  • CONAFOR (2019) El sector forestal mexicano en cifras 2019. SEMARNAT-CONAFOR. Ciudad de México

    Google Scholar 

  • Coop JD, Givnish TJ (2008) Constraints on tree seedling establishment in montane grasslands of the Valles Caldera, New Mexico. Ecology 89:1101–1111. https://doi.org/10.1890/06-1333.1

    Article  PubMed  Google Scholar 

  • Cruzado-Vargas AL, Blanco-García A, Lindig-Cisneros R, Gómez-Romero M, López-Toledo L, de la Barrera E, Sáenz-Romero C (2021) Reciprocal common garden altitudinal transplants reveal potential negative impacts of climate change on Abies religiosa populations in the Monarch Butterfly Biosphere Reserve overwintering sites. Forest 13:69. https://doi.org/10.3390/f12010069

    Article  Google Scholar 

  • De Bauer ML, Hernández T, Mannig WT (1985) Ozone causes needle injury and tree decline in Pinus hartwegii at high altitudes in the mountains around Mexico City. J Air Pollut Control Assoc 35(8):838–840

    Google Scholar 

  • de la Fuente A, Velázquez A, Torres JM, Ramírez H, Rodríguez C, Trinidad A (1998) Predicción del crecimiento y rendimiento de Pinus rudis Endl. en pueblos mancomunados, Ixtlán, Oaxaca. Rev Cien For Mex 23(84):3–8

    Google Scholar 

  • Eguiluz-Piedra T (1985) Origen y evolución del género Pinus (con referencia especial a los pinos mexicanos). Dasonomía Mexicana 6:5–31

    Google Scholar 

  • Endara-Agramont AR, Franco S, Nava G, Valdez JI, Fredericksen TS (2012) Effect of human disturbance on the structure and regeneration of forest in the Nevado de Toluca National Park, Mexico. J For Res 23(1):39–44. https://doi.org/10.1007/s11676-012-0226-8

    Article  Google Scholar 

  • Fang J, Yu G, Liu L, Hu S, Chapin FS (2018) Climate change, human impacts, and carbon sequestration in China. Proc Natl Acad Sci 115: 4015–4020. https://doi.org/10.1073/pnas.1700304115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farjon A (1996) Biodiversity of Pinus (Pinaceae) in Mexico: speciation and paleo-endemism. Bot J Linn Soc 121:365–384

    Google Scholar 

  • Farjon A (2010) A handbook of the world’s conifers. Brill, Leiden

    Google Scholar 

  • Farjon A, Styles BT (1997) Pinus (Pinaceae). Flora Neotropica monograph 75. The New York Botanical Garden, Bronx

    Google Scholar 

  • Farjon A, Pérez de la Rosa JA, Styles BT (1997) A field guide to the pines of Mexico and Central America. Kew Publishing

    Google Scholar 

  • Feeley KJ, Silman MR, Bush MB, Farfán W, García K, Malhi Y, Salinas N, Raurau MN, Saatchi S (2011) Upslope migration of Andean trees. J Biogeogr 38(4):783–791. https://doi.org/10.1111/j.1365-2699.2010.02444.x

    Article  Google Scholar 

  • Fenn ME, de Bauer LI, Quevedo-Nolasco A, Rodríguez-Frausto C (1999) Nitrogen and sulfur deposition and forest nutrient status in the Valley of Mexico. Water Air Soil Pollut 113:155–174

    CAS  Google Scholar 

  • Franco-Corona A (2015) Cambios en el límite superior del bosque del volcán Popocatépetl. Dissertation, Facultad de Geografía, Universidad Nacional Autónoma de México, México DF

  • Franco-Ramos O, Vázquez-Selem L (2017) Trabajo de campo dendrocronológico para estudios de Geografía Física. Experiencias en los volcanes Popocatépetl e Iztaccíhuatl, 2006–2017. Investigaciones Geográficas, p 94

  • Franco-Maass S, Regil-García HH, Ordóñez-Díaz JAB (2006) Dinámica de perturbación-recuperación de las zonas forestales en el Parque Nacional Nevado de Toluca. Madera y Bosques 12:17–28

    Google Scholar 

  • Fuentes-Salinas M, Espinoza-Martínez JM, García-Díaz SE (1999) Eficacia de seis productos antimancha, contra Cladosporium sp. en madera de Pinus hartwegii. Rev Chapingo 1:91–95

    Google Scholar 

  • Gernandt D, Pérez-de la Rosa JA (2014) Biodiversidad de Pinophyta (coníferas) en México. Rev Mex Biodivers S85:S126–S133

    Google Scholar 

  • Gernandt D, Geada LG, Ortiz GS, Liston A (2005) Phylogeny and classification of Pinus. Taxon 54:29–42

    Google Scholar 

  • Giménez de AJ, Escamilla WME, Almeida LL (2009) Datos sobre la vegetación higrófila altimontana del Volcán Iztaccíhuatl (México). Lazaroa 30:109–118

    Google Scholar 

  • Góchez-López E, Arriola-Padilla VJ, Perea-Alcalá A, Reséndiz-Martínez JF, Camacho AD (2015) Insecticidas sistémicos para el control de Dendroctonus adjuntus Blandford, 1897 en el Nevado de Toluca. Rev Mex Cienc For 6(27):50–62

    Google Scholar 

  • Gómez-Mendoza L, Arriaga L (2007) Modeling the effect of climate change on the distribution of Oak and Pine species of Mexico. Conserv Biol 21:1545–1555. https://doi.org/10.1111/j.1523-1739.2007.00814.x

    Article  Google Scholar 

  • Gómez-Pineda E, Sáenz-Romero C, Ortega-Rodríguez JM, Blanco-García A, Madrigal-Sánchez X, Lindig-Cisneros R, López-Toledo L, Pedraza-Santos ME, Rehfeldt GE (2020) Suitable climate habitat changes for Mexican conifers along altitudinal gradients under climate change scenarios. Ecol Appl 30(2):e02041. https://doi.org/10.1002/eap.2041

    Article  PubMed  Google Scholar 

  • González-Medina RE, Cibrián-Tovar D, Cintora-González C, Ramírez-Maldonado H (1998) Evaluación de la salud forestal en dos áreas de regeneración natural de Pinus hartwegii. Rev Chapingo Ser Cien For y del Ambient 4(2):273–278

    Google Scholar 

  • González-Rosales A, Rodríguez-Trejo DA (2004) Efecto del chamuscado de copa en el crecimiento en diámetro de Pinus hartwegii Lindl. en el Distrito Federal, México. Agrociencia 38:537–544

    Google Scholar 

  • Gutiérrez E, Trejo I (2014) Effect of climatic change on the potential distribution of five species of temperate forest trees in Mexico. Rev Mex Biodivers 85:179–188. https://doi.org/10.7550/rmb.37737

    Article  Google Scholar 

  • Han H, Gao H, Huang Y, Chen X, Chen M, Li J (2019) Effects of drought on freshwater ecosystem services in poverty-stricken mountain areas. Glob Ecol Conserv 17:e00537. https://doi.org/10.1016/j.gecco.2019.e00537

    Article  Google Scholar 

  • Hawksworth THFG, Wiens D (1996) Dwarf mistletoes: biology, pathology and systematics. US Department of Agriculture, Forest Service, Washington

    Google Scholar 

  • Hernández M (1983) Los pinos del Parque Nacional Lagunas de Zempoala, Estado de Morelos. Rev Chapingo 39:86–96

    Google Scholar 

  • Hernández T, de Bauer LI, Ortega ML (1986) Identificación y determinación de los principales pigmentos fotosintéticos de hojas de Pinus hartwegii afectadas por gases oxidantes. Agrociencia 66:71–82

    Google Scholar 

  • Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410. https://doi.org/10.1111/j.1466-822x.2005.00168.x

    Article  Google Scholar 

  • Iglesias ALG, Luna RM (2008) Polimorfismo isoenzimático en la población de Pinus hartwegii Lindl. del Cofre de Perote, Ver., México. Ecosistemas 17:115–122

    Google Scholar 

  • Iglesias ALG, Tivo FY (2006) Caracterización morfométrica de la población de Pinus hartwegii Lindl. del Cofre de Perote, Veracruz, México. Ra Ximhai 2:449–468

    Google Scholar 

  • Iglesias LG, Solís-Ramos LY, Viveros-Viveros H (2012) Variación morfométrica en dos poblaciones naturales de Pinus hartwegii Lindl. del estado de Veracruz. Phyton 81:239–246

    Google Scholar 

  • Islebe GA, Cleef AM (1995) Alpine plant communities of Guatemala. Flora 190:79–87

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) Global controls of forest line elevation in the northern and southern hemispheres. Glob Ecol Biogeogr 9:253–268. https://doi.org/10.1046/j.1365-2699.2000.00162.x

    Article  Google Scholar 

  • Körner C (1995) Alpine plant diversity: a global survey and functional interpretations. In: Chapin FS, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Springer, Berlin, pp 45–62. https://doi.org/10.1007/978-3-642-78966-3_4

    Chapter  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459. https://doi.org/10.1007/s004420050540

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732. https://doi.org/10.1111/j.1365-2699.2003.01043.x

    Article  Google Scholar 

  • Kramer PJ, Kozlowski TT (1960) Physiology of trees. McGraw-Hill, New York

    Google Scholar 

  • Lauer W (1973) The altitudinal belts of the vegetation in the central Mexican highlands and their climatic conditions. Arct Alp Res 5(Suppl 3):99–113. https://doi.org/10.1080/00040851.1973.12003723

    Article  Google Scholar 

  • Lauer W (1978) Timberline studies in Central Mexico. Arct Alp Res 10:383–396. https://doi.org/10.1080/00040851.1978.12003975

    Article  Google Scholar 

  • Lindley J (1839) Miscellaneous notices: Mexican pines. Edwards’s Bot Regist 25:62–64

    Google Scholar 

  • Little A (1977) Pinus hartwegii in Honduras. Ceyba 21(1):45–46

    Google Scholar 

  • Look EEM (1950) The pines of Mexico and British Honduras: a report on a reconnaissance of Mexico and British Honduras during 1947. Bull Dep For S Afr No 35:244 p

    Google Scholar 

  • López-Feldman A (2012) Deforestation in México: a preliminary analysis. University Library of Munich, Germany

    Google Scholar 

  • Loya-Rebollar E, Sáenz-Romero C, Lindig-Cisneros RA, Lobit P, Villegas-Moreno J, Sánchez-Vargas NM (2013) Clinal variation in Pinus hartwegii populations and its application for adaptation to climate change. Silvae Genetica 62(3):86–95. https://doi.org/10.1515/sg-2013-0011

  • Maestre FT, Callaway RM, Valladares F, Lortie CJ (2009) Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J Ecol 97:199–205. https://doi.org/10.1111/j.1365-2745.2008.01476.x

    Article  Google Scholar 

  • Mathiasen RL, Nickrent DL, Shaw DC, Watson DM (2008) Mistletoes. Pathology, systematics, ecology and management. Plant Dis 92:988–1006. https://doi.org/10.1094/PDIS-92-7-0988

    Article  PubMed  Google Scholar 

  • Matos JA (1995) Pinus hartwegii and P. rudis: a critical assessment. Syst Bot 20(1):6–21

    Google Scholar 

  • Mejía-Canales A, Franco-Maass S, Endara-Agramont A, R, Ávila-Akerberg V (2018) Caracterización del sotobosque en bosques densos de pino y oyamel en el Nevado de Toluca, México. Madera y Bosques 24:e2431656. https://doi.org/10.21829/myb.2018.243

    Article  Google Scholar 

  • Morente-López J, Lara-Romero C, García-Fernández A, Rubio-Teso ML, Prieto-Benítez S, Iriondo JM (2021) Gene flow effects on populations inhabiting marginal areas: origin matters. J Ecol 109:139–153. https://doi.org/10.1111/1365-2745.13455

    Article  Google Scholar 

  • Navar JJ, Domínguez PA, Contreras JC, Estrada C (1997) Ajuste de siete modelos de ahusamiento a los perfiles fustales de Pinus hartwegii Lindl. del noreste de México. Agrociencia 31(1):73–82

    Google Scholar 

  • Obieta MC, Sarukhán J (1981) Estructura y composición de la vegetación herbácea de un bosque uniespecífico de Pinus hartwegii. Bol Soc Bot Mex 41:75–125

    Google Scholar 

  • Obregón-Molina G (2012) Estudio filogeográfico de Pinus hartwegii Lindley (Pinaceae). Dissertation, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. México DF

  • Ogaz-Ituarte B (1982) Biología de Gnathotrichus sulcatus Lec. en Pinus hartwegii Lindl. bajo dos condiciones climáticas diferentes. Rev Chapingo 7(37-38):64–74

    Google Scholar 

  • Ortega-Baranda V, Rodríguez-Trejo DA (2007) Supervivencia y crecimiento iniciales y concentración de nutrimentos de Pinus hartwegii plantado en localidades quemadas. Rev Chapingo Ser Cienc For y del Ambient 13:115–124

    Google Scholar 

  • Ortiz-Rodríguez JN, Rodríguez-Trejo DA (2008) Incremento en biomasa y supervivencia de una plantación de Pinus hartwegii Lindl. en áreas quemadas. Rev Chapingo Ser Cienc For y del Ambient 14:89–95

    Google Scholar 

  • Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Ann Rev Entomol 42:179–206. https://doi.org/10.1146/annurev.ento.42.1.179

    Article  CAS  Google Scholar 

  • Pérez-Vera OA, Cárdenas-Soriano E, Alvarado-Rosales D, Cibrián-Tovar D, Equihua-Martínez A (2011) Histopatología del pino de las alturas (Pinus hartwegii lindl.) inoculado con tres hongos ophiostomatoides. Rev Chapingo Ser Cienc For y del Ambient 17(1):91–102. https://doi.org/10.5154/r.rchscfa.2010.03.006

    Article  Google Scholar 

  • Perry JP (1991) The pines of México and Central America. Timber Press Inc., Portland

    Google Scholar 

  • Pompa-García M, Hadad MA (2016) Sensitivity of pines in Mexico to temperature varies with age. Atmósfera 29:209–219. https://doi.org/10.20937/ATM.2016.29.03.03

    Article  Google Scholar 

  • Price RA, Liston A, Strauss SH (1998) Phylogeny and systematics of Pinus. In: Richardson MD (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 49–68

    Google Scholar 

  • Prieto-Benítez S, Morente-López J, Rubio-Teso ML, Lara-Romero C, García-Fernández A, Torres E, Iriondo JM (2021) Evaluating assisted gene flow in marginal populations of high mountain species. Front Ecol Evol 9:638837. https://doi.org/10.3389/fevo.2021.638837

    Article  Google Scholar 

  • Queijeiro-Bolaños ME, Cano-Santana Z (2016) Growth of Hartweg’s pine (Pinus hartwegii) parasitized by two dwarf mistletoe species (Arceuthobium spp.). Bot Sci 94:51–62. https://doi.org/10.17129/botsci.218

    Article  Google Scholar 

  • Queijeiro-Bolaños ME, Cano-Santana Z, Castellanos-Vargas I (2011) Distribución diferencial de dos especies de muérdago enano sobre Pinus hartwegii en el área natural protegida “Zoquiapan y Anexas”, Estado de México. Act Bot Mex 96:49–57

    Google Scholar 

  • Quintero M, Wunder S, Estrada RD (2009) For services rendered? Modeling hydrology and livelihoods in Andean payments for environmental services schemes. For Ecol Manag 258:1871–1880. https://doi.org/10.1016/j.foreco.2009.04.032

    Article  Google Scholar 

  • Ramírez-Contreras A, Rodríguez-Trejo DA (2009) Plantas nodriza en la reforestación con Pinus hartwegii Lindl. Rev Chapingo Ser Cienc For y del Ambient 15:43–48

    Google Scholar 

  • Ramírez-Dávila JF, Porcayo-Camargo E (2010) Estudio comparativo de la distribución espacial del muérdago enano (Arceuthobium sp.) en la ladera norte del Parque Nacional Nevado de Toluca, México. Bosque 31:28–38

    Google Scholar 

  • Ricker M, Gutiérrez-García G, Daly DC (2007) Modeling long-term tree growth curves in response to warming climate: test cases from a subtropical mountain forest and a tropical rainforest in Mexico. Can J For Res 37:977–989. https://doi.org/10.1139/X06-304

    Article  Google Scholar 

  • Rodríguez-Trejo DA (2001) Ecología del fuego en el ecosistema de Pinus hartwegii Lindl. Rev Chapingo Ser Cienc For y del Ambient 7:145–151

    Google Scholar 

  • Rojas FE, Keyes MR, Martínez A (1988) Susceptibilidad al substrato edáfico y a la sequía de diez especies de pinos. Agrociencia 72:183–196

    Google Scholar 

  • Rzedowski J (1978) Vegetación de México. Limusa

    Google Scholar 

  • Rzedowski J (1998) Diversidad y orígenes de la flora fanerogámica de México. In: Ramamorthy TP, Bye R, Lot A, Fa J (eds) La diversidad biológica de México, orígenes y distribución. Instituto de Biología, pp 129–145

    Google Scholar 

  • Sáenz-Romero C, Lamy JB, Loya-Rebollar E, Plaza-Aguilar A, Burlett R, Lobit P, Delzon S (2013) Genetic variation of drought-induced cavitation resistance among Pinus hartwegii population´s from an altitudinal gradient. Act Physiol Plant 35:2905–2913. https://doi.org/10.1007/s11738-013-1321-y

    Article  CAS  Google Scholar 

  • Sánchez-González A (2008) Una visión actual de la diversidad y distribución de los pinos de México. Madera y Bosques 14:107–120

    Google Scholar 

  • Sánchez-González A, López-Mata L (2003) Clasificación y ordenación de la vegetación del norte de la Sierra Nevada, a lo largo de un gradiente altitudinal. An Inst Biol UNAM Ser Bot 74(1):47–71

    Google Scholar 

  • Sarukhán J, Koleff P, Carabias J, Soberón J, Dirzo R, Llorente J, Halffter G, González R, March I, Mohar A, Anta S, De la Maza J (2009) Capital natural de México. Síntesis: conocimiento actual, evaluación y perspectivas de sustentabilidad. CONABIO

    Google Scholar 

  • Shaw GR (1909) The Pines of Mexico. Publications of the Arnold Arboretum No.1, p 30

  • Styles TB (1998) El género Pinus: su panorama en México. In: Ramamorthy TP, Bye R, Lot A, Fa J (eds) La diversidad biológica de México, orígenes y distribución. Instituto de Biología, pp 385–408

    Google Scholar 

  • Torres-Beltrán C (2013) Análisis de los cambios del límite superior del bosque en el volcán Iztaccíhuatl. Dissertation, Facultad de Geografía, Universidad Nacional Autónoma de México, México DF

  • Torres-Rojo JM, Moreno-Sánchez R, Mendoza-Briseño MA (2016) Sustainable forest management in Mexico. Curr For Rep 2:93–105. https://doi.org/10.1007/s40725-016-0033-0

    Article  Google Scholar 

  • Tranquillini W (1964) The physiology of plants at high altitudes. Plant Physiol 15:345–362. https://doi.org/10.1146/annurev.pp.15.060164.002021

    Article  CAS  Google Scholar 

  • Valdez-Ramírez M (1972) Microflora of a coniferous forest of the Mexican Basin. Plant Soil 36:31–38

    Google Scholar 

  • Vázquez I, Sosa-Moss C (1987) Identificación y dinámica de población de nematodos fitoparásitos y de otros fitopatógenos en Pinus hartwegii en la región central del Eje Neovolcánico. Rev Cienc For 12(61):19–56

    Google Scholar 

  • Velázquez A, Musalem MA (1986) Comportamiento de la viabilidad de la semilla de Pinus hartwegii Lindl. almacenada en el piso forestal. Agrociencia 64:141–146

    Google Scholar 

  • Velázquez MA, Musálem MA, Keyes MR, Zarate GP (1986) Influencia del tratamiento al suelo y la condición de apertura del dosel en el establecimiento inicial de la regeneración natural de Pinus hartwegii Lindl. Agrociencia 64:147–170

    Google Scholar 

  • Vera-Vilchis V, Rodríguez-Trejo DA (2007) Survival and height increment of Pinus hartwegii two years after prescribed burns and experimental forest fires. Agrociencia 41:219–230

    Google Scholar 

  • Villers L, Trejo I (2000) El cambio climático y la vegetación. In: Gay C (ed) México: una visión hacia el siglo XXI: El cambio climático en México. INECC-UNAM, pp 57–72

    Google Scholar 

  • Viveros-Viveros H, Sáenz-Romero C, Vargas-Hernández JJ, López-Upton J, Ramírez-Valverde G, Santacruz-Varela A (2009) Altitudinal genetic variation in Pinus hartwegii Lindl.: Height growth, shoot phenology and cold damage in seedlings. For Ecol Manag 257:836–842. https://doi.org/10.1016/j.foreco.2008.10.021

    Article  Google Scholar 

Download references

Acknowledgements

FUAR acknowledges to the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the scholarship granted (292688) to complete his Doctorate studies. This research was supported by a grant to MPS from CONACYT no. 219696. All authors thank Federico M. Ramírez manager of National Forest Library “Ing. Roberto Villaseñor Ángeles” for the support in the bibliographic consultation. We thank Lynna Kiere for helpful comments on previous versions of the manuscripts.

Funding

This work was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT), basic science project number 219696 (https://www.conacyt.gob.mx/) to MPS and the Doctorate degree scholarship number 543046/292688 received by FUAR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. JERA thanks CONACyT and the Instituto de Ciencias Agropecuarias y Rurales-Universidad Autónoma del Estado de México for support of his postdoctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlín Pérez-Suárez.

Ethics declarations

Conflict of interest

No conflict of interest (financial or non-financial). Our research has not involved any human participants and/or animals. The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Communicated by M. Aspinwall .

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 490.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Suárez, M., Ramírez-Albores, J.E., Vargas-Hernández, J.J. et al. A review of the knowledge of Hartwegʼs Pine (Pinus hartwegii Lindl.): current situation and the need for improved future projections. Trees 36, 25–37 (2022). https://doi.org/10.1007/s00468-021-02221-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02221-9

Keywords

Navigation