Skip to main content

Advertisement

Log in

Two species of the Asian endemic genus Keteleeria form ectomycorrhizas with diverse fungal symbionts in southwestern China

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The ectomycorrhizal status of Keteleeria species is reported for the first time based on morphological and molecular analyses of root tips from southwestern China. Based on internal transcribed spacer rDNA sequences, we detected 26 ectomycorrhizal (ECM) fungal species on roots of Keteleeria evelyniana and Keteleeria davidiana collected from natural sites and a botanical garden in Kunming, China. These ECM symbionts represent six fungal lineages, including /russula–lactarius, /inocybe, /sebacina, /tomentella–thelephora, /wilcoxina, and /cenococcum. Our results provide the first evidence of ECM formation by Keteleeria and also supply ecologically important information for conservation and restoration efforts to recover populations of Keteleeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107

    Article  Google Scholar 

  • Boerner REJ, DeMars BG, Leicht PN (1996) Spatial patterns of mycorrhizal infectiveness of soils long a successional chronosequence. Mycorrhiza 6:79–90

    Article  Google Scholar 

  • Brundrett M (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant soil 320:37–77

    Article  CAS  Google Scholar 

  • Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13(9):1103–1113

    Article  PubMed  Google Scholar 

  • Fu LK, Chin CM (1992) China plant red data book—rare and endangered plants, vol 1. Science, Beijing, 741 pp

    Google Scholar 

  • Fu LK, Li N, Mill RR (1999) Pinaceae. In: Wu CY, Raven H (eds) Flora of China 4. Science, Beijing, pp 11–52

    Google Scholar 

  • García-Montero LG, Diaz P, Massimo GD, Garcia-Abril A (2010) A review of research on Chinese Tuber species. Mycol Prog 9:315–335

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Lian C, Narimatsu M, Nara K, Hogetsu T (2006) Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol 171(4):825–836

    Article  PubMed  Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Article  Google Scholar 

  • Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM (2010) Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome Biol Evol 2:504–517

    Article  PubMed  Google Scholar 

  • Manchester SR, Chen Z-D, Lu A-M, Uemura K (2009) Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J Syst Evol 47:1–42

    Article  Google Scholar 

  • Matsuda Y, Hijii N (1998) Spatiotemporal distribution of fruitbodies of ectomycorrhizal fungi in an Abies firma forest. Mycorrhiza 8:131–138

    Article  Google Scholar 

  • Matsuda Y, Hijii N (2004) Ectomycorrhizal fungal communities in an Abies firma forest, with special reference to ectomycorrhizal associations between seedlings and mature trees. Can J Botany 82:822–829

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier, London

    Google Scholar 

  • Smith ME, Douhan GD, Rizzo DM (2007) Intra-specific and intra-sporocarp ITS variation of ectomycorrhizal fungi as assessed by rDNA sequencing of sporocarps and pooled ectomycorrhizal roots from a Quercus woodland. Mycorrhiza 18:15–22

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Tao LY, Cheng MD (2009) Primary report on the transplantation and domestication cultivation of wild Keteleeria davidiana saplings. Guizhou For Sci Technol 37(1):55–57, 26

    Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Vaario L-M, Xing ST, Xie ZQ, Lun ZM, Sun X, Li YH (2006) In situ and in vitro colonization of Cathaya argyrophylla (Pinaceae) by ectomycorrhizal fungi. Mycorrhiza 16:137–142

    Article  PubMed  Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Sinclair L, Hall IR, Cole ALJ (1995) Boletus edulis sensu lato: a new record for New Zealand. New Zeal J Crop Hort 23:227–231

    Article  Google Scholar 

  • White TM, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–321

    Google Scholar 

  • Yamada A, Katsuya K (2001) The disparity between the number of ectomycorrhizal fungi and those producing fruit bodies in a Pinus densiflora stand. Mycol Res 105:957–965

    Google Scholar 

  • Yu FQ, Xiao YQ, Liu PG (2007) Spatiotemporal distribution of ectomycorrhizal fungi in Pinus yunnanensis forests. Acta Ecol Sinica 27(6):2325–2333

    Google Scholar 

  • Zhang JM (1999) A preliminary study on the effect of silviculture with different seedlings of Keteleeria fortunei. J Fujian Coll Forest 19(1):73–76

    Google Scholar 

  • Zhu JJ, Wei ZJ, Qiu XJ (1993) The experimental study on artificial reproduction of Keteleeria tree species. Sci silvae sinicae 29(1):67–71

    Google Scholar 

Download references

Acknowledgments

Support for this research was provided by the National Natural Science Foundation of China (no. 30800004) and the Knowledge Innovation Program of the Chinese Academy of Sciences (no. 2010KIBA01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zai-Wei Ge or Matthew E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, ZW., Smith, M.E., Zhang, QY. et al. Two species of the Asian endemic genus Keteleeria form ectomycorrhizas with diverse fungal symbionts in southwestern China. Mycorrhiza 22, 403–408 (2012). https://doi.org/10.1007/s00572-011-0411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0411-1

Keywords

Navigation