Skip to main content
Log in

Towards development of an efficient somatic embryogenesis protocol for the palm tree Euterpe precatoria (Mart.) from leaf tissues of adult plants

  • Micropropagation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

An efficient, reproducible, and unprecedented protocol of somatic embryogenesis (SE) was developed from leaf tissues of adult plants of Euterpe precatoria Mart., palm tree of the Amazon biome of great economic potential. For callus induction, immature leaf segments from the proximal (closest to the meristem), median and distal regions of the palm heart were cultivated in MS and Y3 basal media containing Picloram or 2,4-D auxins in different concentrations. The effect of combining cytokinin 2iP (45 µM) with Picloram or 2,4-D (450 µM) was also evaluated, in addition to the palm heart region and basal media. The multiplication of embryogenic structures was carried out in basal media with a reduced concentration of growth regulators. For somatic embryos maturation, the following were tested: MS medium with reduced concentration of salts (half-strength MS); basal MS + 5 µM abscisic acid (ABA); basal MS + 25 g L-1 polyethylene glycol (PEG) 6000; basal MS + 60 g L-1 sucrose and basal MS + 2.5 µM ABA + 12.5 g L-1 PEG 6000. Mature somatic embryos were then inoculated at half-strength MS for germination. Anatomical and histochemical analyses of materials from the different phases of the process were performed. Higher efficiency of the MS medium with 450 µM Picloram and 45 µM 2iP was observed in the induction of callogenesis, with the formation of somatic embryos still in this phase. The apical and median regions were the most responsive for callus formation. The rate of proliferation of embryogenic structures was high and remained up to 180 d in the multiplication medium. The maturation treatments are efficient. Specifically, the treatment basal MS + 2.5 µM ABA + 12.5 g L-1 PEG 6000 provided greater individualization of somatic embryos. After 30 d in the germination medium, complete germination was verified. Anatomical analyses revealed evidence of unicellular origin. This study provides a first protocol capable of promoting the vegetative propagation from leaf tissues of Euterpe precatoria by SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Acre (2010) Secretaria do Meio Ambiente. Ordenamento territorial local de Xapuri. SEMA, Rio Branco

  • Aguiar MO, Mendonça MS (2003) Morfo-anatomia da semente de Euterpe precatoria Mart (Palmae). Rev Bras Sem 25(1):37–42. https://doi.org/10.1590/S0101-31222003000100007

  • Al-Khari JM, Al-Bahrany AM (2012) Effect of abscisic acid and polyethylene glycol on the synchronization of somatic embryo development in Date Palm (Phoenix dactylifera L.). Biotechnology 11(6):318–325. https://doi.org/10.3923/biotech.2012.318.325

  • Alkhateeb AA (2006) Somatic embryogenesis in date palm (Phoenix dactylifera L.) cv. Sukary in response to sucrose and polyethylene glycol. Biotechnology 5(4):466–470. https://doi.org/10.3923/biotech.2006.466.470

  • Almeida RF, Santos IR, Meira FS, Grynberg P, Lopes R, Cunha RNV, Franco OL, Scherwinski-Pereira JE, Mehta A (2019a) Differential protein profiles in interspecific hybrids between Elaeis oleifera and E. guineensis with contrasting responses to somatic embryogenesis competence acquisition. Plant Cell Tiss Organ Cult 137:11–21. https://doi.org/10.1007/s11240-018-01545-8

  • Almeida UO, Neto RCA, Lunz AMP, Costa DA, Araujo JM, Rodrigues MJS (2019b) Crescimento de açaizeiro (Euterpe precatoria Mart.) consorciado com bananeira. South Am J Basic Ed, Technical Technol 5(3):154–166

  • Aslam J, Khan SA, Cheruth AJ, Mujib A, Sharma MP, Srivastava OS (2011) Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L) cultivars. Saudi J Biol Sci 18(4):369–380. https://doi.org/10.1016/j.sjbs.2011.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Avalos G, Otárola MF, Engeln JT (2013) Successional stage, fragmentation and exposure to extraction influence the population structure of Euterpe precatoria (Arecaeae). Rev Biol Trop 61(3):1415–142

    Article  PubMed  Google Scholar 

  • Ayil-Gutiérrez BA, Galaz-Ávalos RM, Peña-Cabrera E, Loyola-Vargas VM (2013) Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora. Plant Signaling Behav 8(11):e26998. https://doi.org/10.4161/psb.26998

    Article  Google Scholar 

  • Bakos F, Szabó L, Olmedilla A, Barnabás B (2009) Histological comparison between wheat embryos developing in vitro from isolated zygotes and those developing in vivo. Sex Plant Reprod 22:15–25. https://doi.org/10.1007/s00497-008-0087-7

    Article  PubMed  Google Scholar 

  • Balzon TA, Luis ZG, Scherwinski-Pereira JE (2013) New approaches to improve the efficiency of somatic embryogenesis in oil palm (Elaeis guineensis Jacq) from mature zygotic embryos. In Vitro Cell Dev Biol - Plant 49(1):41–50. https://doi.org/10.1007/s11627-012-9479-3

    Article  Google Scholar 

  • Bhatia S, Bera T (2015) Somatic embryogenesis and organogenesis. In: Bhatia S, Sharma K, Dahiya R, Bera T (eds) Modern applications of plant biotechnology in pharmaceutical sciences. Elsevier, Amsterdam, pp 210–230

    Google Scholar 

  • Businge E, Bygdell J, Wingsle G, Moritz T, Egertsdotter U (2013) The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos. Physiologia Plant 149(2):273–285. https://doi.org/10.1111/ppl.12039

    Article  Google Scholar 

  • Cangahuala-Inocente GC, Steiner N, Maldonado SB, Guerra MP (2009) Patterns of protein and carbohydrate accumulation during somatic embryogenesis of Acca sellowiana. Pesq. agropec. bras. 44(3):217–224. https://doi.org/10.1590/S0100-204X2009000300001

    Article  Google Scholar 

  • Canhoto JM (2010) Biotecnologia Vegetal: da clonagem de plantas à manipulação genética. Imprensa da Universidade de Coimbra, Coimbra. https://doi.org/10.14195/978-989-26-0404-6

    Article  Google Scholar 

  • Corrêa TR, Motoike SY, Andrade APS, Coser SM, Queiroz V, Granja MMC, Caetano DDN, Peña CNM, Picoli EAT (2016) Accelerated in vitro propagation of elite oil palm genotypes (Elaeis guineensis Jacq.) by substituting cytokinin with putrescine. Afr J Biotechnol 15(50):2767–2775. https://doi.org/10.5897/AJB2016.15670

    Article  Google Scholar 

  • Corrêa TR, Motoike SY, Coser SM, Silveira G, Resende MDV, Chia GS (2015) Estimation of genetic parameters for in vitro oil palm characteristics (Elaeis guineensis Jacq.) and selection of genotypes for cloning capacity and oil yield. Ind Crops Prod 7(77):1033–1038. https://doi.org/10.1016/j.indcrop.2015.09.066

    Article  Google Scholar 

  • Corredoira E, Merkle SA, Martínez MT, Toribio M, Canhoto JM, Correia SI, Ballester A, Vieitez AM (2019) Non-zygotic embryogenesis in hardwood species. Crit Rev Plant Sci 38(1):29–97. https://doi.org/10.1080/07352689.2018.1551122

    Article  Google Scholar 

  • Costa CRX, Pivetta KFL, Souza GRB, Mazzini-Guedes RB, Pereira STS, Nogueira MR (2018) Effects of temperature, light and seed moisture content on germination of Euterpe precatoria Palm. Am J Plant Sci 9(1):98–106

    Article  Google Scholar 

  • Deo P, Tyagi AP, Taylor M, Harding R, Becker D (2010) Factors affecting somatic embryogenesis and transformation in modern plant breeding. The South Pacific Journal of Natural Science 28:27–40. https://doi.org/10.1071/SP10002

    Article  Google Scholar 

  • Duval Y, Engelmann F, Durand-Gasselin T (1995) Somatic embryogenesis in oil palm (Elaeis guineensis Jacq). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry: somatic embryogenesis and synthetic seed I. Springer-Verlag, Berlin, pp 335–352 https://doi.org/10.1007/978-3-662-03091-2

  • Eeuwens CJ (1976) Mineral requirements for growth and callus initiation of tissue explants excised from mature coconut palms (Cocos nucifera) and cultured in vitro. Physiol Plant 36(1):23–28. https://doi.org/10.1111/j.1399-3054.1976.tb05022.x

    Article  Google Scholar 

  • Eiserhardt WL, Svenning J-C, Borchsenius F, Kristiansen T, Balslev H (2013) Separating environmental and geographical determinants of phylogenetic community structure in Amazonian palms (Arecaceae). Bot J Linn Soc 171(1):244–259. https://doi.org/10.1111/j.1095-8339.2012.01276.x

    Article  Google Scholar 

  • Eiserhardt WL, Svenning J-C, Kissling WD, Balslev H (2011) Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Ann Bot 108(8):1391–1416. https://doi.org/10.1093/aob/mcr146

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmeer KES (2013) Factors regulating somatic embryogenesis in plants. In: Aslam J, Srivastava PS, Sharma MP (eds) Somatic embryogenesis and gene expression. Narosa Publishing House, New Delhi, pp 56–81

    Google Scholar 

  • Ferreira CD, Silva-Cardoso IMA, Ferreira JCB, Costa FHS, Scherwinski-Pereira JE (2020b) Morphostructural and histochemical dynamics of Euterpe precatoria (Arecaceae) germination. J Plant Res 133:693–713. https://doi.org/10.1007/s10265-020-01219-7

  • Ferreira CD, Silva-Cardoso IMA, Meira RO, Scherwinski-Pereira JE (2022) Somatic embryogenesis and plant regeneration from zygotic embryos of the palm tree Euterpe precatoria Mart. Plant Cell Tiss Organ Cult 148:667–686. https://doi.org/10.1007/s11240-022-02227-2

    Article  Google Scholar 

  • Ferreira MP, Almeida ADR, Papa DA, Minervino JBS, Veras HFP, Formighieri A, Santos CAN, Ferreira MAD, Figueiredo EO, Ferreira EJL (2020a) Individual tree detection and species classification of Amazonian palms using UAV images and deep learning. For Ecol Manag 475:118397. https://doi.org/10.1016/j.foreco.2020.118397

  • Freitas EO, Monteiro TR, Nogueira GF, Scherwinski-Pereira JE (2016) Somatic embryogenesis from immature and mature zygotic embryos of the açaí palm (Euterpe oleracea): induction of embryogenic cultures, morphoanatomy and its morphological characteristics. Sci Horti 212:126–135. https://doi.org/10.1016/j.scienta.2016.09.044

    Article  Google Scholar 

  • Freitas EO, Silva-Cardoso IMA, Ferreira JCB, Costa FHS, Scherwinski-Pereira JE (2018) Somatic embryogenesis in Açaí palm (Euterpe oleracea Mart.). In: Jain S, Gupta P (eds) Step wise protocols for somatic embryogenesis of important woody plants. Forestry Sciences. Springer, Cham, pp 267–290. https://doi.org/10.1007/978-3-319-79087-9_22

  • Gallo-Meagher M, Green J (2002) Somatic embryogenesis and plant regeneration from immature embryos of saw palmetto, an important landscape and medicinal plant. Plant Cell Tiss Organ Cult 68:253–256. https://doi.org/10.1023/A:1013995123688

    Article  Google Scholar 

  • Galotta ALQA, Boaventura MAD (2005) Constituintes químicos da raiz e do talo da folha do açaí (Euterpe precatoria Mart, Arecaceae). Quim Nov 28(4):610–613. https://doi.org/10.1590/S0100-40422005000400011

    Article  Google Scholar 

  • George EF, Hall MA, Klerk GJD (2008) The components of plant tissue culture media II: organic additions, osmotic and pH effects, and support systems. In: George EF, Hall MA, Klerk GJD (eds) Plant propagation by tissue culture. Springer, Dordrecht, pp 115–173. https://doi.org/10.1007/978-1-4020-5005-3_4

  • Godbole S, Sood A, Sharma M, Pk Nagar, Ps Ahuja (2004) Starch deposition and amylase accumulation during somatic embryogenesis in bamboo (Dendrocalamus hamiltonii). J Plant Physiol 161(2):245–248. https://doi.org/10.1078/0176-1617-01219

    Article  PubMed  Google Scholar 

  • Goh DKS, Bon MC, Aliotti F, Escoute J, Ferrière N, Monteuuis O (2001) In vitro somatic embryogenesis in two major rattan species: Calamus merrillii and Calamus subinermis. In Vitro Cell Dev Biol-Plant 37:375–381. https://doi.org/10.1007/s11627-001-0066-2

    Article  Google Scholar 

  • Gomes HT, Bartos PMC, Scherwinski-Pereira JE (2017) Dynamics of morphological and anatomical changes in leaf tissues of an interspecific hybrid of oil palm during acquisition and development of somatic embryogenesis. Plant Cell Tiss Organ Cult 131:269–282. https://doi.org/10.1007/s11240-017-1282-8

    Article  Google Scholar 

  • Granja MMC, Motoike SY, Andrade APS, Correa TR, Picoli EAT, Kuki KN (2018) Explant origin and culture media factors drive the somatic embryogenesis response in Acrocomia aculeata (Jacq.) Lodd. ex Mart., an emerging oil. Ind Crops Prod 117:1–12. https://doi.org/10.1016/j.indcrop.2018.02.074

    Article  Google Scholar 

  • Guerra MP, Handro W (1991) Somatic embryogenesis in tissue cultures of Euterpe edulis Mart. (Palmae). In: Ahuja MR (ed) Woody plant biotechnology. Springer, New York, pp 189–196. https://doi.org/10.1007/978-1-4684-7932-4_19

  • Guerra MP, Torres AC, Teixeira JB (1999) Embriogênese somática e sementes sintéticas. In: Torres AC, Caldas LS, Buso JA (ed) Cultura de tecidos e transformação genética de plantas. SPI/EMBRAPA, Brasília, pp 533–568

  • Gueye B, Morcillo F, Collin M, Gargani D, Overvoorde P, Aberlenc-Bertossi F, Verdeil JL (2009) Acquisition of callogenic capacity in date palm leaf tissues in response to 2, 4-D treatment. Plant Cell Tiss Organ Cult 99:35–45. https://doi.org/10.1007/s11240-009-9573-3

    Article  Google Scholar 

  • Gutiérrez-Mora A, González-Gutiérrez AG, Rodríguez-Garay B, Ascencio-Cabral A, Li-Wei L (2012) Plant somatic embryogenesis: some useful considerations. In: Sato K-I (ed) Embryogenesis. InTech, China, pp 229–248. https://doi.org/10.5772/36345

  • Hemanthakumar AS, Preetha TS, Pillai PP, Seeni S (2019) Embryogenesis followed by enhanced micro-multiplication and eco-restoration of Calamus thwaitesii Becc.: an economic non-wood forest produce for strengthening agroforestry system. Agroforest Syst 93:1093–1105. https://doi.org/10.1007/s10457-018-0207-9

    Article  Google Scholar 

  • Henderson A, Galeano G (1996) Euterpe, Prestoea, and Neonicholsonia (Palmae: Euterpeinae). New York Botanical Garden, New York

    Google Scholar 

  • Ho W-J, Vasil IK (1983) Somatic Embryogenesis in sugarcane (Saccharum officinarum L.) I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180. https://doi.org/10.1007/BF01281800

    Article  Google Scholar 

  • Jalil M, Chee WW, Othman RY, Khalid N (2008) Morphohistological examination on somatic embryogenesis of Musa acuminata cv. Mas (AA). Sci Hortic 117(4):335–340. https://doi.org/10.1016/j.scienta.2008.05.018

    Article  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110. https://doi.org/10.1007/s10725-005-3478-x

    Article  Google Scholar 

  • Johansen D (1940) Plant microtechnique. Mc Graw Hill, New York

    Google Scholar 

  • Karun A, Siril EA, Radha E, Parthasarathy VA (2004) Somatic embryogenesis and plantlet regeneration from leaf and inflorescence explants of arecanut (Areca catechu L.). Curr Sci 86(12):1623–1628

    Google Scholar 

  • Karunaratne S, Gamage C, Kovoor A (1991) Leaf maturity, a critical factor in embryogenesis. J Plant Physiol 139:27–31

    Article  Google Scholar 

  • Klubicová K, Uvácková L, Danchenko M, Nemecek P, Skultéty L, Salaj J, Salaj T (2017) Insights into the early stage of Pinus nigra Arn. somatic embryogenesis using discovery proteomics. J Proteomics 169:99–111. https://doi.org/10.1016/j.jprot.2017.05.013

    Article  PubMed  Google Scholar 

  • Liu Y, Wei C, Wang H, Ma X, Shen H, Yang L (2020) Indirect somatic embryogenesis and regeneration of Fraxinus mandshurica plants via callus tissue. J For Res. https://doi.org/10.1007/s11676-020-01199-3

    Article  Google Scholar 

  • Loyola-Vargas VM (2016) The history of somatic embryogenesis. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Somatic embryogenesis: fundamental aspects and applications. Switzerland, Springer, pp 11–22. https://doi.org/10.1007/978-3-319-33705-0

  • Loyola-Vargas VM, Ochoa-Alejo N (2016) Somatic embryogenesis. An overview. In: Loyola-Vargas VM, Ochoa-Alejo N (ed) Somatic embryogenesis: fundamental aspects and applications. Springer, Switzerland, pp 1–8. https://doi.org/10.1007/978-3-319-33705-0

  • Luis ZG, Scherwinski-Pereira JE (2014) An improved protocol for somatic embryogenesis and plant regeneration in macaw palm (Acrocomia aculeata) from mature zygotic embryos. Plant Cell, Tissue Organ Cult 118:485–496. https://doi.org/10.1007/s11240-014-0500-x

    Article  Google Scholar 

  • Martin F, Abati V, Burel A, Clément-Vidal A, Sanier C, Fabre D, Woraathasin N, Rio M, Besret P, Farinas B, Montoro P, Leclercq J (2018) Overexpression of EcGSH1 induces glutathione production and alters somatic embryogenesis and plant development in Hevea brasiliensis. Ind Crops Prod 112:803–814. https://doi.org/10.1016/j.indcrop.2017.12.057

    Article  Google Scholar 

  • Martínez MT, Vieitez AM, Corredoira E (2015) Improved secondary embryo production in Quercus alba and Q. rubra by activated charcoal, silver thiosulphate and sucrose: influence of embryogenic explant used for subculture. Plant Cell Tiss Organ Cult 121:531–546. https://doi.org/10.1007/s11240-015-0722-6

    Article  Google Scholar 

  • Martins RC, Filgueiras TS, Albuquerque AP (2014) Use and diversity of palm (Arecaceae) resources in central western Brazil. Sci World J 942043https://doi.org/10.1155/2014/942043

  • Mazri MA, Meziani R, Belkoura I, Elmaataoui S, Mokhless B, Nour S (2019) Maturation and germination of date palm (Phoenix dactylifera L.) somatic embryos. Not Sci Biol 11(1):86–93. https://doi.org/10.15835/nsb11110403

    Article  Google Scholar 

  • Mazri MA, Meziani R, Belkoura I, Mokhless B, Nour S (2018) A combined pathway of organogenesis and somatic embryogenesis for an efficient large-scale propagation in date palm (Phoenix dactylifera L.) cv. Mejhoul. 3 Biotech 8(4):215. https://doi.org/10.1007/s13205-018-1235-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Meira F, Luis ZG, Silva-Cardoso IMA, Schewinski-Pereira JE (2019) Developmental pathway of somatic embryogenesis from leaf tissues of macaw palm (Acrocomia aculeata) revealed by histological events. Flora. 250:59–67. https://doi.org/10.1016/j.flora.2018.11.011

    Article  Google Scholar 

  • Meira F, Luis ZG, Silva-Cardoso IMA, Schewinski-Pereira JE (2020) Somatic embryogenesis from leaf tissues of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.]. An Acad Bras Cienc 92(3):e20180709. https://doi.org/10.1590/0001-3765202020180709

    Article  PubMed  Google Scholar 

  • Merkle SA, Parrott WA, Flinn BS (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Springer, Dordrecht, pp 155–204. https://doi.org/10.1007/978-94-011-0485-2_5

  • Muda NA, Awal A (2017) Somatic embryogenesis in sugar palm (Arenga pinnata Wurmb Merr.) from zygotic embryo explants. Pertanika J Sci & Technol 25:133–144

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  Google Scholar 

  • Nakasha JJ, Sinniah UR, Kemat N, Mallappa KS (2016) Induction, subculture cycle, and regeneration of callus in safed musli (chlorophytum borivilianum) using different types of phytohormones. Pharmacogn Mag 12(47):460–464. https://doi.org/10.4103/0973-1296.191457

    Article  Google Scholar 

  • O’Brien TP, Feder N, Mccylly ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373. https://doi.org/10.1007/BF01248568

    Article  Google Scholar 

  • O’Brien TP, Mccylly ME (1981) The study of plant structure: principles and selected methods. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Pacheco-Palencia LA, Duncan CE, Talcott ST (2009) Phytochemical composition and thermal stability of two commercial acai species, Euterpe oleracea and Euterpe precatoria. Food Chem 115:1199–1205. https://doi.org/10.1016/j.foodchem.2009.01.034

    Article  Google Scholar 

  • Pacurar DI, Perrone I, Bellini C (2014) Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol Plant 151:83–96. https://doi.org/10.1111/ppl.12171

    Article  PubMed  Google Scholar 

  • Pádua MS, Paiva LV, Labory CRG, Alves E, Stein VC (2013) Induction and characterization of oil palm (Elaeis guineensis Jacq.) pro-embryogenic masses. Ann Acad Bras Cienc 85:1545–1556. https://doi.org/10.1590/0001-37652013107912

    Article  Google Scholar 

  • Pais MS (2019) SE induction in woody species. The future after omic’s data assessment. Front Plant Sci 10:240. https://doi.org/10.3389/fpls.2019.00240

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips GC, Garda M (2019) Plant tissue culture media and practices: an overview. In Vitro Cell Dev Biol-Plant 55:242–257. https://doi.org/10.1007/s11627-019-09983-5

    Article  Google Scholar 

  • Quiroz-Figueroa FR, Fuentes-Cerda CFJ, Rojas-Herrera R, Loyola-Vargas VM (2002) Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Rep 20:1141–1149. https://doi.org/10.1007/s00299-002-0464-x

    Article  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 28 January 2015

  • Rai MK, Shekhawat NS, Harish Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Organ Cult 106:179–190. https://doi.org/10.1007/s11240-011-9923-9

    Article  Google Scholar 

  • Ramos SLF, Lopes MTG, Lopes R, Dequigiovanni G, Macêdo JLV, Sebbenn AM, Silva EB, Garcia JN (2019) Mating system analysis of Açaí-do-Amazonas (Euterpe precatoria Mart.) using molecular markers. Crop Breed Appl Biotechnol 19(1):126–130. https://doi.org/10.1590/1984-70332019v19n1n17

    Article  Google Scholar 

  • Ree JF, Guerra MP (2015) Palm (Arecaceae) somatic embryogenesis. In Vitro Cell Dev Biol - Plant 51:589–602. https://doi.org/10.1007/s11627-015-9722-9

    Article  Google Scholar 

  • Reflini (2017) Evaluation of 2.4-D and NAA concentrations for callus and somatic embryos formation in oil palm. Journal of Advanced Agricultural Technologies 4(3):215–218

    Article  Google Scholar 

  • Ribeiro DG, Almeida RF, Fontes W, Castro MS, Souza MV, Ricart CAO, Cunha RNV, Lopes R, Scherwinski-Pereira JV (2019) Stress and cell cycle regulation during somatic embryogenesis plays a key role in oil palm callus development. J Proteomics 192:137–146. https://doi.org/10.1016/j.jprot.2018.08.015

    Article  PubMed  Google Scholar 

  • Ribnicky DM, Ilic N, Cohen JD, Cooke TJ (1996) The effects of exogenous auxins on endogenous indole-3- acetic acid metabolism. The implications for carrot somatic embryogenesis. Plant Physiol 112:549–558. https://doi.org/10.1104/pp.112.2.549

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues AS, Durigan ME (2007) O agronegócio do palmito no Brasil. IAPAR, Londrina

  • Ronchi VN, Giorgeiti L (1995) The cell’s commitment to somatic embryogenesis. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry: somatic embryogenesis and synthetic seed I. Springer – Verlag, Berlin, pp 3–19. https://doi.org/10.1007/978-3-662-03091-2

  • Saldanha CW, Martins-Corder MP (2012) In vitro germination and embryogenic competence acquisition of Euterpe edulis Martius immature zygotic embryos. Crop Breed Appl Biotechnol 12(3):171–178. https://doi.org/10.1590/S1984-70332012000300002

    Article  Google Scholar 

  • Saleh EOL, Scherwinski-Pereira JE (2016) Advances in somatic embryogenesis of palm trees (Arecaceae): fundamentals and review of protocols. In Mujib A (ed) Somatic embryogenesis in ornamentals and its applications. Springer, New Delhi, pp 231–254. https://doi.org/10.1007/978-81-322-2683-3_15

  • Samosir YMS, Godwin ID, Adkins SW (1999) The use of osmotically active agents and abscisic acid can optimise the maturation of coconut somatic embryos. In: Oropeza C, Verdeil JL, Ashburner GR, Cardeña R, Santamaría JM (eds) Current advances in coconut biotechnology. Current Plant Science and Biotechnology in Agriculture. Springer, Dordrecht, 341–340. https://doi.org/10.1007/978-94-015-9283-3_25

  • Sánchez V, Luna JH, Soria N, Gía J (2015) Obtención de embriones somáticos de Parajubaea cocoides Burret a partir de embriones cigóticos inmaduros. Biot Veg 15(1):17–25

    Google Scholar 

  • Sané D, Aberlenc-Bertossi F, Gassama-Dia YK, Sagna M, Trouslot MF, Duval Y, Borgel A (2006) Histocytological analysis of callogenesis and somatic embryogenesis from cell suspensions of date palm (Phoenix dactylifera). Ann Bot 98(2):301–308. https://doi.org/10.1093/aob/mcl104

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bharwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452. https://doi.org/10.3390/molecules24132452

    Article  PubMed Central  Google Scholar 

  • Scherwinski-Pereira JE, Guedes RS, Silva RA, Fermino JR, Luis ZG, Freitas EO (2012) Somatic embryogenesis and plant regeneration in açaí palm (Euterpe oleracea). Plant Cell, Tissue Organ Cult 109:501–508. https://doi.org/10.1007/s11240-012-0115-z

    Article  Google Scholar 

  • Sghaier B, Bahloul M, Bouzid RG, Drira N (2008) Development of zygotic and somatic embryos of Phoenix dactylifera L. cv. Deglet Nour: comparative study. Sci Hortic 116(2):169–175. https://doi.org/10.1016/j.scienta.2007.11.009

    Article  Google Scholar 

  • Shareef JH (2017) Desiccation and cold hardening of date palm somatic embryos improve germination. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Date palm biotechnology protocols Volume I. Springer Nature, New York pp 119–128. https://doi.org/10.1007/978-1-4939-7156-5_11

  • Shoji M, Sato H, Nakagawa R, Funada R, Kubo T, Ogita S (2006) Influence of osmotic pressure on somatic embryo maturation in Pinus densiflora. J Plant Physiol 11(6):449–45. https://doi.org/10.1007/s10310-006-0227-6

    Article  Google Scholar 

  • Silva IMA, Scherwinski-Pereira JE (2018) Somatic embryogenesis as a tool for propagation of palm trees (Arecaceae): principles, strategies and challenges. Nova Science Publishers, New York, pp 139–194

    Google Scholar 

  • Silva RC, Luis ZG, Scherwinski-Pereira JE (2012) Differential responses to somatic embryogenesis of different genotypes of Brazilian oil palm (Elaeis guineesis Jacq.). Plant Cell Tissue Organ Cult 109:334–342. https://doi.org/10.1007/s11240-012-0170-5

    Article  Google Scholar 

  • Silva-Cardoso IMA, Meira FS, Gomes ACMM, Scherwinski-Pereira JE (2019a) Anatomy and histochemistry of somatic embryogenesis of Syagrus oleracea from immature inflorescences. Crop Breed Appl Biotechnol 19(4):444–450. https://doi.org/10.1590/1984-70332019v19n4n62

  • Silva-Cardoso IMA, Meira FS, Gomes ACMM, Scherwinski-Pereira JE (2019b) Histology, histochemistry and ultrastructure of pre-embryogenic cells determined for direct somatic embryogenesis in the palm tree Syagrus oleracea. Physiol Plant 168(4):845–875. https://doi.org/10.1111/ppl.13026

  • Silva-Cardoso IMA, Gomes ACMM, Scherwinski-Pereira JE (2022) Cellular responses of oil palm genotypes during somatic embryogenesis involve participation of procambial cells DNA demethylation and auxin accumulation. Plant Cell Reports 41(9):1875–1893. https://doi.org/10.1007/s00299-022-02898-3

  • Sousa PCA, Souza SSSE, Meira FS, Meira RO, Gomes HT, Silva-Cardoso IMA, Scherwinski-Pereira JE (2020) Somatic embryogenesis and plant regeneration in Piper aduncum L. In Vitro Cell Dev Biol-Plant. 56:618–633. https://doi.org/10.1007/s11627-020-10110-y

    Article  Google Scholar 

  • Stefenon VM, Ree JF, Pinheiro MVM, Goeten D, Steiner N, Guerra MP (2020) Advances and constraints in somatic embryogenesis of Araucaria angustifolia, Acca sellowiana, and Bactris gasipaes. Plant Cell Tiss Organ Cult 143:241–263. https://doi.org/10.1007/s11240-020-01928-w

    Article  Google Scholar 

  • Stoian D (2004) Todo lo que sube tiene que bajar: la economía del palmito (Euterpe precatoria Mart.) em el norte amazónico de Bolivia. In: Alexiades MN, Shanley P (ed) Productos Forestales, Medios de Subsistencia y Conservación: Estudios de Caso sobre Sistemas de Manejo de Productos Forestales No Maderables. CIFOR, Jacarta, pp 118–140

  • Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59(3):448–460. https://doi.org/10.1111/j.1365-313X.2009.03880.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanase C, Bujor OC, Popa VI (2019) Phenolic natural compounds and their influence on physiological processes in plants. In Watson RR (Ed) Polyphenols in plants, 2nd ed, Academic Press: Cambridge, MA, USA, pp. 45–58. https://doi.org/10.1016/B978-0-12-813768-0.00003-7

  • Vidal BC (1970) Dichroism in collagen bundles stained with xylidine-Ponceau 2R. Ann Histochim 15(4):289–296

    Google Scholar 

  • Viñas M, Jiménez VM (2011) Factores que influyen en la embriogénesis somática in vitro in palmas (Arecaceae). Rev Colomb Biotecnol 13(2):229–242

    Google Scholar 

  • Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell, Tissue Organ Cult 69:233–249. https://doi.org/10.1023/A:1015673200621

    Article  Google Scholar 

  • Wang HC, Chen JT, Chang WC (2006) Somatic embryogenesis and plant regeneration from leaf, root and stem-derived callus cultures of Areca catechu. Biol Plant 50:279–282. https://doi.org/10.1007/s10535-006-0020-6

    Article  Google Scholar 

  • West MA, Harada J (1993) Embryogenesis in higher plants: an overview. Plant Cell 5:1361–1369. https://doi.org/10.1105/tpc.5.10.1361

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiendi NMA, Constantin M, Wachyar A (2015) Study of oil palm (Elaeis guineensis Jacq) in vitro embryogenesis using young leaf explants. J Trop Crop Sci 2(2):5–9

    Article  Google Scholar 

  • Wu G, Wei X, Wang X, Wei Y (2020) Induction of somatic embryogenesis in different explants from Ormosia henryi Prain. Plant Cell Tiss Organ Cult 142:229–240. https://doi.org/10.1007/s11240-020-01822-5

    Article  Google Scholar 

  • Yamaguchi KKL, Pereira LFR, Lamarão CV, Lima ES, Veiga-Junior VF (2015) Amazon acai: Chemistry and biological activities: a review. Food Chem 179:137–151. https://doi.org/10.1016/j.foodchem.2015.01.055

    Article  PubMed  Google Scholar 

  • Yang X, Yang X, Guo T, Gao K, Zhao T, Chen Z, An X (2018) High-efficiency somatic embryogenesis from seedlings of Koelreuteria paniculata Laxm. Forests 9(12):769. https://doi.org/10.3390/f9120769

    Article  Google Scholar 

  • Yang Y, Wang N, Zhao S (2020) Functional characterization of a WRKY family gene involved in somatic embryogenesis in Panax ginseng. Protoplasma 257:449–458. https://doi.org/10.1007/s00709-019-01455-2

    Article  PubMed  Google Scholar 

  • Zhang BH, Feng R, Liu F, Wang Q (2001) High frequency somatic embryogenesis and plant regeneration of an elite Chinese cotton variety. Bot Bull Acad Sin 42:9–16

    Google Scholar 

  • Zhou T, Yang X, Guo K, Deng J, Xu J, Gao W, Lindsey K, Zhang X (2016) ROS homeostasis regulates somatic embryogenesis via the regulation of auxin signaling in cotton. Mol Cell Proteomics 15:2108–2124. https://doi.org/10.1074/mcp.M115.049338

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

To the University of Brasília, Brasília, DF, Brazil, for the financial support for the field collection, and the Federal University of Acre, Rio Branco, AC, Brazil, for helping with the collection of biological material in the field.

Funding

This research was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes/Embrapa 001-2011/Grant 39) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 308731/2019-0).

Author information

Authors and Affiliations

Authors

Contributions

JES-P and JCBF conceived, carried out, designed and analyzed the experiments, summarized the results, and wrote the manuscript. IMASC, ROM, and JCBF performed the experiments, anatomic cuts, and microscopic examination and acquired the photographs, besides writing the first version of the manuscript. JCBF and FHSC provided field collection and introduction of the material to in vitro conditions. All authors reviewed and approved the manuscript in its final form.

Corresponding author

Correspondence to Jonny Everson Scherwinski-Pereira.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, J.C.B., de Araújo Silva-Cardoso, I.M., Meira, R.O. et al. Towards development of an efficient somatic embryogenesis protocol for the palm tree Euterpe precatoria (Mart.) from leaf tissues of adult plants. In Vitro Cell.Dev.Biol.-Plant 58, 750–768 (2022). https://doi.org/10.1007/s11627-022-10310-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-022-10310-8

Keywords

Navigation