Skip to main content
Log in

Resin exudation and resinicolous communities on Araucaria humboldtensis in New Caledonia

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Conifers of the endemic species Araucaria humboldtensis on Mont Humboldt in New Caledonia exhibit extensive resin exudation. The resin flows of these threatened trees are here shown to be induced by two beetle species, which bore into branches and branchlets, leading to abundant outpouring of resin, which gradually solidifies into often drop-shaped resin bodies. The exudate is colonized by a resinicolous and likely insect-vectored ascomycete, Resinogalea humboldtensis, which is only known from Mont Humboldt. The fungus grows into fresh resin and eventually develops ascomata on the surface of solidifying resin. The solidified resin is also colonized by another fungus, a dematiaceous hyphomycete. Based on protein coding (CO1, CAD, ArgK) and ribosomal (LSU) genes, the larger branch-boring beetle is a weevil of the tribe Araucariini, which represents the sister group of all other cossonine weevils. The smaller beetle species belongs to the longhorn beetles (Cerambycidae). The strong host specificity of the Araucariini, along with the occurrence of two unique fungi, suggests that the resin-associated community is native and has evolved on the endemic conifer host. The formation of large amber deposits indicates massive resin production in the past, but the environmental triggers of exudation in Mesozoic and Cenozoic ecosystems remain unclear. Our observations from Mont Humboldt support the notion that the occurrences of small drop-shaped amber pieces in Triassic to Miocene amber deposits were linked to ancient insect infestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology, and identification. Phycologia 6:127–160

    Article  CAS  Google Scholar 

  • Alonso-Zarazaga MA, Lyal CHC (1999) A world catalogue of families and genera of Curculionoidea (Insecta: Coleoptera) (excepting Scolytidae and Platypodidae). Entomopraxis, Barcelona

    Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant-microbe interactions: chemical diversity in plant defense. Science 324:746–747

    Article  CAS  PubMed  Google Scholar 

  • Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson D, Reitner J, Seyfullah LJ, Schmidt AR (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 77:307–319

    Google Scholar 

  • Blakeslee AF (1915) Linder’s roll tube method of separation culture. Phytopathology 5:68–69

    Google Scholar 

  • Bonar L (1971) A new Mycocalicium on scarred Sequoia in California. Madronõ 21:62–69

    Google Scholar 

  • Brasier M, Cotton L, Yenney Y (2009) First report of amber with spider webs and microbial inclusions from the earliest Cretaceous (c.140 Ma) of Hastings, Sussex. J Geol Soc 166:989–997

    Article  Google Scholar 

  • Bray PS, Anderson KB (2009) Identification of Carboniferous (320 million years old) class Ic amber. Science 326:132–134

    Article  CAS  PubMed  Google Scholar 

  • Breda A, Preto N, Roghi G, Furin S, Meneguolo R, Ragazzi E, Fedele P, Gianolla P (2009) The Carnian Pluvial Event in the Tofane area (Cortina d’Ampezzo, Dolomites, Italy). Geo Alp 6:80–115

    Google Scholar 

  • Dal Corso J, Mietto P, Newton RJ, Pancost RD, Preto N, Roghi G, Wignall PB (2012) Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geology 40:79–82

    Article  Google Scholar 

  • Dal Corso J, Gianolla P, Newton RJ, Franceschi M, Roghi G, Caggiati M, Raucsik B, Budai T, Haas J, Preto N (2015) Carbon isotope records reveal synchronicity between carbon cycle perturbation and the “Carnian Pluvial Event” in the Tethys realm (Late Triassic). Glob Planet Change 127:79–90

    Article  Google Scholar 

  • Eckenwalder JE (2009) Conifers of the world: the complete reference. Timber Press, Portland

    Google Scholar 

  • Escapa IH, Catalano SA (2013) Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. Int J Plant Sci 174:1153–1170

    Article  Google Scholar 

  • Farrell BD, Dussourd DE, Mitter C (1991) Escalation of plant defense: do latex/resin canals spur plant diversification? Am Nat 138:881–900

    Article  Google Scholar 

  • Gaudeul M, Rouhan G, Gardner MF, Hollingsworth PM (2012) AFLP markers provide insights into the evolutionary relationships and diversification of New Caledonian Araucaria species (Araucariaceae). Am J Bot 99:68–81

    Article  PubMed  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  • Grandcolas P, Murienne J, Robillard T, Desutter-Grandcolas L, Jourdan H, Guilbert E, Deharveng L (2015) New Caledonia: a very old Darwinian island? Philos Trans R Soc B 363:3309–3317

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hill RS (1995) Conifer origin, evolution and diversification in the southern hemisphere. In: Enright NJ, Hill RS (eds) Ecology of the southern conifers. University Press, Cambridge, pp 10–29

    Google Scholar 

  • Holloway JD (1979) A survey of the Lepidoptera, biogeography and ecology of New Caledonia, Series entomologica, vol 15. The Hague, Dr W Junk, Netherlands

    Book  Google Scholar 

  • Howe GA, Schaller A (2008) Direct defense in plants and their induction by wounding and insect herbivores. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Stuttgart, pp 7–29

    Chapter  Google Scholar 

  • Jaffré T (1995) Distribution and ecology of the conifers of New Caledonia. In: Enright NJ, Hill RS (eds) Ecology of the Southern Conifers. Melbourne University Press, Melbourne, pp 171–196

    Google Scholar 

  • Jordal BH, Sequeira AS, Cognato AI (2011) The age and phylogeny of wood boring weevils and the origin of subsociality. Mol Phylogenet Evol 59:708–724

    Article  PubMed  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 92:86–98

    Google Scholar 

  • Kranitz ML, Biffin E, Clark A, Hollingsworth ML, Ruhsam M, Gardner MF, Thomas P, Mill RR, Ennos AR, Gaudeul M, Lowe AJ, Hollingsworth PM (2014) Evolutionary diversification of New Caledonian Araucaria. PLoS ONE 10:e110308. doi:10.1371/journal.pone.0110308

    Article  Google Scholar 

  • Krumbiegel G, Krumbiegel B (2005) Bernstein—Fossile Harze aus aller Welt. Goldschneckverlag im Quelle & Meyer Verlag GmbH & Co, Wiebelsheim

    Google Scholar 

  • Kunzmann L (2007) Araucariaceae (Pinopsida): aspects in palaeobiogeography and palaeobiodiversity in the Mesozoic. Zool Anz 246:257–277

    Article  Google Scholar 

  • Kuschel G (1966) A cossonine genus with bark-beetle habits, with remarks on relationships and biogeography (Coleoptera: Curculionidae). N Z J Sci 9:3–29

    Google Scholar 

  • Kuschel G (2000) La fauna curculiónica (Coleoptera: Curculionoidea) de la Araucaria araucana. Rev Chil Entomol 27:41–51

    Google Scholar 

  • Labandeira CC (2014) Amber. Paleontol Soc Pap 20:163–216

    Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280

    Article  CAS  PubMed  Google Scholar 

  • Langenheim JH (1995) Biology of amber-producing trees: focus on case studies of Hymenaea and Agathis. In: Anderson KB, Creeling JC (eds) Amber, resinite and fossil resin. American chemical society symposium series, vol 617, pp 1–31

  • Langenheim JH (2003) Plant resins. In: Chemistry, evolution, ecology, ethnobotany. Timber Press, Portland

  • Lele KM (1956) Plant fossils from Parsora in the south Rewa Gondwana basin, India. Palaeobotanist 4:23–34

    Google Scholar 

  • McKellar RC, Wolfe AP, Muehlenbachs K, Tappert R, Engel MS, Cheng T, Sánchez-Azofeifa GA (2011) Insect outbreaks produce distinctive carbon isotope signatures in defensive resins and fossiliferous ambers. Proc R Soc B 278:3219–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mecke R, Mille C, Engels W (2005) Araucaria beetles worldwide: evolution and host adaptations of a multi-genus phytophagous guild of disjunct Gondwana derived biogeographic occurrence. Pró Araucária Online 1:1–18

    Google Scholar 

  • Miller CN (1977) Mesozoic conifers. Bot Rev 43:217–280

    Article  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans

  • Morat P (1993a) Our knowledge of the flora of New Caledonia: endemism and diversity in relation to vegetation types and substrates. Biodivers Lett 1:72–81

    Article  Google Scholar 

  • Morat P (1993b) The terrestrial biota of New Caledonia. Biodivers Lett 1:69–71

    Article  Google Scholar 

  • Najarro M, Peñalver E, Pérez-de la Fuente R, Ortega-Blanco J, Menor-Salván C, Barrón E, Soriano C, Rosales I, López del Valle R, Velasco F, Tornos F, Daviero-Gomez V, Gomez B, Delclòs X (2010) Review of the El Soplao amber outcrop, Early Cretaceous of Cantabria, Spain. Acta Geol Sin 84:959–976

    Article  CAS  Google Scholar 

  • Néraudeau D, Perrichot V, Batten DJ, Boura A, Girard V, Jeanneau L, Nohra YA, Polette F, Saint Martin S, Saint Martin J-P, Thomas R (2017) Upper Cretaceous amber from Vendée, north-western France: age dating and geological, chemical, and palaeontological characteristics. Cretac Res 70:77–95

    Article  Google Scholar 

  • Nohra YA, Perrichot V, Jeanneau L, Le Pollès L, Azar D (2015) Chemical characterization and botanical origin of French ambers. J Nat Prod 78:1284–1293

    Article  CAS  PubMed  Google Scholar 

  • Penney D (2010) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester

    Google Scholar 

  • Peris D, Philips TK, Delclòs X (2015) Ptinid beetles from the Cretaceous gymnosperm-dominated forests. Cretac Res 52:440–452

    Article  Google Scholar 

  • Peris D, Ruzzier E, Perrichot V, Delclòs X (2016) Evolutionary and paleobiological implications of Coleoptera (insecta) from Tethyan-influenced Cretaceous ambers. Geosci Front 7:695–706

    Article  Google Scholar 

  • Preto N, Kustatscher E, Wignall PB (2010) Triassic climates—state of the art and perspectives. Palaeogeogr Palaeoclimatol Palaeoecol 290:1–10

    Article  Google Scholar 

  • Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8:e65576. doi:10.1371/journal.pone.0065576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2006–2009) FigTree. Tree figure drawing tool version 1.3.1, Institute of Evolutionary Biology, University of Edinburgh (http://tree.bio.ed.ac.uk/software/figtree/)

  • Rambaut A, Drummond AJ (2009) Tracer. MCMC trace analysis tool version v1.5.0, University of Edinburgh (http://tree.bio.ed.ac.uk/software/tracer/)

  • Rautio M, Sipponen A, Lohi J, Lounatmaa K, Koukila-Kähkölä P, Laitinen K (2011) In vitro fungistatic effects of natural coniferous resin from Norway spruce (Picea abies). Eur J Clin Microbiol Infect Dis 31:1783–1789

    Article  PubMed  Google Scholar 

  • Rikkinen J (1995) What’s behind the pretty colours? A study on the photobiology of lichens. Bryobrothera 4:1–239

    Google Scholar 

  • Rikkinen J (1999) Two new species of resinicolous Chaenothecopsis (Mycocaliciaceae) from western North America. Bryologist 102:366–369

    Article  Google Scholar 

  • Rikkinen J (2003a) New resinicolous ascomycetes from beaver scars in western North America. Ann Bot Fenn 40:443–450

    Google Scholar 

  • Rikkinen J (2003b) Chaenothecopsis nigripunctata, a remarkable new species of resinicolous Mycocaliciaceae from western North America. Mycologia 95:98–103

    Article  PubMed  Google Scholar 

  • Rikkinen J, Poinar GO Jr (2000) A new species of resinicolous Chaenothecopsis (Mycocaliciaceae, Ascomycota) from 20 million year old Bitterfeld amber, with remarks on the biology of resinicolous fungi. Mycol Res 104:7–15

    Article  Google Scholar 

  • Rikkinen J, Tuovila H, Beimforde C, Seyfullah LJ, Perrichot V, Schmidt AR (2014) Chaenothecopsis neocaledonica sp. nov.: the first resinicolous mycocalicioid fungus from Araucariaceae. Phytotaxa 173:49–60

    Article  Google Scholar 

  • Rikkinen J, Beimforde C, Seyfullah LJ, Perrichot V, Schmidt K, Schmidt AR (2016) Resinogalea humboldtensis gen. et sp. nov., a new resinicolous fungus from New Caledonia, placed in Bruceomycetaceae, a new family of Ascomycota. Ann Bot Fenn 53:205–215

    Article  Google Scholar 

  • Roghi G, Ragazzi E, Gianolla P (2006a) Triassic amber of the Southern Alps. Palaios 21:143–154

    Article  Google Scholar 

  • Roghi G, Kustatscher E, van Konijenburg van Cittert JHA (2006b) Late Triassic Plants from the Julian Alps (Italy). Boll Soc Paleontol Ital 45:133–140

    Google Scholar 

  • Roghi G, Gianolla P, Minarelli L, Pilati C, Preto N (2010) Palynological correlation of Carnian humid sub-events throughout western Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 290:89–106

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rust J, Singh H, Rana RS, McCann T, Singh L, Anderson K et al (2010) Biogeographic and evolutionary implications of a diverse paleobiota in amber from the Early Eocene of India. Proc Natl Acad Sci USA 107:18360–18365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saint Martin S, Saint Martin J-P, Girard V, Néraudeau D (2013) Organismes filamenteux de l’ambre du Santonien de Belcodène (Bouches-du-Rhône, France). Ann Paléontol 99:339–360

    Article  Google Scholar 

  • Schmidt AR, Ragazzi E, Coppellotti O, Roghi G (2006) A microworld in Triassic amber. Nature 444:835

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AR, Jancke S, Lindquist EE, Ragazzi E, Roghi G, Nascimbene P, Schmidt K, Wappler T, Grimaldi DA (2012) Arthropods in amber from the Triassic Period. Proc Natl Acad Sci USA 109:14796–14801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott AC (2000) The pre-quaternary history of fire. Palaeogeogr Palaeoclimatol Palaeoecol 164:281–329

    Article  Google Scholar 

  • Seifert KA (1985) A monograph of Stilbella and some allied hyphomycetes. Stud Mycol 27:1–235

    Google Scholar 

  • Sequeira AS, Farrell BD (2001) Evolutionary origin of Gondwanan interactions: how old are Araucaria beetle herbivores? Biol J Linn Soc 74:459–474

    Article  Google Scholar 

  • Sequeira AS, Normark BB, Farrell BD (2000) Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles. Proc R Soc B 267:2359–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Setoguchi H, Osawa TA, Pintaud JC, Jaffré T, Veillon JM (1998) Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. Am J Bot 85:1507–1516

    Article  CAS  PubMed  Google Scholar 

  • Sipponen A, Laitinen K (2011) Antimicrobial properties of natural coniferous rosin in the European Pharmacopoeia challenge test. APMIS 119:720–724

    Article  CAS  PubMed  Google Scholar 

  • Stockey RA (1982) The Araucariaceae: an evolutionary perspective. Rev Palaeobot Palynol 37:133–154

    Article  Google Scholar 

  • Stockey RA (1994) Mesozoic Araucariaceae: morphology and systematic relationships. J Plant Res 107:493–502

    Article  Google Scholar 

  • Tuovila H (2013) Sticky business—diversity and evolution of Mycocaliciales (Ascomycota) on plant exudates. Publications from the Department of Botany, University of Helsinki, vol 44, pp 1–142

  • Tuovila H, Cobbinah JR, Rikkinen J (2011a) Chaenothecopsis khayensis, a new resinicolous calicioid fungus on African mahogany. Mycologia 103:610–615

    Article  PubMed  Google Scholar 

  • Tuovila H, Larsson P, Rikkinen J (2011b) Three resinicolous North American species of Mycocaliciales in Europe with a re-evaluation of Chaenothecopsis oregana Rikkinen. Karstenia 51:37–49

    Google Scholar 

  • Tuovila H, Rikkinen J, Huhtinen S (2012) Nomenclatural corrections in calicioid fungi. Karstenia 52:73–74

    Google Scholar 

  • Tuovila H, Schmidt AR, Beimforde C, Dörfelt H, Grabenhorst H, Rikkinen J (2013) Stuck in time—a new Chaenothecopsis species with proliferating ascomata from Cunninghamia resin and its fossil ancestors in European amber. Fungal Divers 58:199–213

    Article  Google Scholar 

  • Weitschat W, Wichard W (2002) Atlas of plants and animals in Baltic Amber. Pfeil-Verlag, Munich

    Google Scholar 

Download references

Acknowledgements

We would like to thank Jérôme Munzinger (Montpellier) for help in the preparation of our field work in New Caledonia and Guillermo Kuschel (Auckland) for advice in the identification of the beetles. Stefano Castelli and Guido Roghi (Padova) kindly provided the images of the Triassic amber droplets. Fieldwork and collection in southern New Caledonia were kindly permitted by the Direction de l’Environnement (Province Sud), permit number 17778 delivered in November 2011. Partial support for fieldwork was provided to V.P. by grant OSUR (Univ. Rennes 1) from program AO1.P4 in 2011. We would also like to thank two anonymous reviewers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander R. Schmidt.

Additional information

Handling Editor: Heikki Hokkanen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 190 kb)

Supplementary material 2 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beimforde, C., Seyfullah, L.J., Perrichot, V. et al. Resin exudation and resinicolous communities on Araucaria humboldtensis in New Caledonia. Arthropod-Plant Interactions 11, 495–505 (2017). https://doi.org/10.1007/s11829-016-9475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9475-3

Keywords

Navigation