Skip to main content

Zonal Vegetation of the Humid Nemoral (Cool–Temperate) Zone

  • Chapter
  • First Online:
Global Vegetation

Abstract

The cool-temperate (nemoral) zone is currently the most densely populated zone on Earth; its vegetation has therefore been altered considerably over the past centuries. Particularly in Europe and East Asia, anthropogenic land use (forest plantations, agricultural and settlement areas, including many neobiota) has replaced the summergreen broad-leaved forest, which mostly constitutes the natural zonal vegetation. Furthermore, under extremely oceanic conditions, there are evergreen laurel and Nothofagus forests on the western side of the Andes and the Southern Alps of New Zealand, and tall nemoral coniferous forests on the Pacific side of North America. A distinctive feature of the summergreen broad-leaved forests is the seasonal rhythm of the vegetation of the tree and field layers, from leaf development in spring to leaf shedding in fall, with abundant geophytes in spring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, M., Miguchi, H., Hinda, A., Makita, A., & Nakashizuka, T. (2005). Short-term changes affecting regeneration of Fagus crenata after the simultaneous death of Sasa kurilensis. Journal of Vegetation Science, 16, 49–56.

    Google Scholar 

  • Adler, B. P., Seabloom, E. W., Borer, E. T., Hillebrand, H., Hautier, Y., Hector, A., et al. (2011). Productivity is a poor predictor of plant species richness. Science, 333, 1750–1753.

    CAS  PubMed  Google Scholar 

  • Ahti, T., Hämet-Ahti, L., & Jalas, J. (1968). Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici, 5, 169–211.

    Google Scholar 

  • Aldrich, P. R., Briguglio, J. S., Kapadia, S. N., Morker, M. U., Rawal, A., Kalra, P., Huebner, C. D., & Greer, G. K. (2010). Genetic structure of the invasive tree Ailanthus altissima in eastern United States cities. Journal of Botany, 2010 Article ID 795735, 9 pp.

    Google Scholar 

  • Anagnostakis, S. L. (1987). Chestnut blight: The classical problem of an introduced pathogen. Mycologia, 79(1), 23–27.

    Google Scholar 

  • Anderson, F. A. (Ed.). (2005). Coniferous forests. Ecosystems of the World, 6, 646 pp.

    Google Scholar 

  • Archibold, O. W. (1995). Ecology of world vegetation (510 pp). London: Chapman & Hall.

    Google Scholar 

  • Arroyo, M. T. K., Riveros, M., Peñalosa, A., Cavieres, L., & Faggi, A. M. (1996). Phytogeographic relationships and regional richness patterns of the cool temperate rainforest flora of southern South America. In R. G. Lawford, P. Alaback, & E. R. Fuentes (Eds.), High latitude rain forests and associated ecosystems of the western coast of the Americas: Climate, hydrology, ecology and conservation (pp. 134–172). New York: Springer.

    Google Scholar 

  • Axelrod, D. I., Arroyo, M. T. K., & Raven, P. H. (1991). Historical development of the temperate vegetation in the Americas. Revista Chilena de Historia Natural, 64, 413–446.

    Google Scholar 

  • Barnes, B. V. (1991). Deciduous forests of North America. In E. Röhrig & B. Ulrich (Eds.), Temperate deciduous forests. Ecosystems of the World (Vol. 7, pp. 219–344).

    Google Scholar 

  • Barreda, V., & Palazzesi, L. (2007). Patagonian vegetation turnovers during Paleogene-early Neogene: Origin of arid-adapted floras. The Botanical Review, 73, 31–50.

    Google Scholar 

  • Battles, J. J., Armesto, J. J., Vann, D. R., Zarin, D. J., Aravena, J. C., Pérez, C., & Johnson, A. H. (2002). Vegetation composition, structure, and biomass of two unpolluted watersheds in the Cordillera de Piuchué, Chiloé Island, Chile. Plant Ecology, 158, 5–19.

    Google Scholar 

  • Beer, R., Kaiser, F., Schmidt, K., Ammann, B., Carraro, G., Grisa, E., & Tinner, W. (2008). Vegetation history of the walnut forests in Kyrgyzstan (Central Asia): Natural or anthropogenic origin? Quaternary Science Reviews, 27, 621–632.

    Google Scholar 

  • Bertrand, A., Robitaille, G., Castonguay, Y., Nadeau, P., & Boutin, R. (1997). Changes in ABA and gene expression in cold-acclimated sugar maple. Tree Physiology, 17, 31–37.

    CAS  PubMed  Google Scholar 

  • Blaser, J., Carter, J., & Gilmour, D. (Eds.). (1998). Biodiversity and sustainable use of Kyrgystan’s walnut-fruit forests (182 pp). Gland/Cambridge/Bern: IUCN/Intercooperation.

    Google Scholar 

  • Blažková, D. (1993). Phytosociological study of grassland vegetation in North Korea. Folia Geobotanica & Phytotaxonomica, 28, 247–260.

    Google Scholar 

  • Blossey, B., Skinner, L. C., & Taylor, J. (2001). Impact and management of purple loosestrife (Lythrum salicaria) in North America. Biodiversity and Conservation, 10, 1787–1807.

    Google Scholar 

  • Bogner, W. (1968). Experimentelle Prüfung von Waldbodenpflanzen auf ihre Ansprüche an die Form der Stickstoffernährung. Mitteilungen des Vereins für Forstliche Standortskunde und Forstpflanzenzüchtung, 18, 3–45.

    Google Scholar 

  • Bohn, U., Neuhäusl, R., Gollub, G., Hettwer, C., Neuhäuslová, Z., Raus, T., Schlüter, H., & Weber, H. (2003). Map of the natural vegetation of Europe. Scale 1:2.500.000. Münster: Landwirtschaftsverlag.

    Google Scholar 

  • Bolte, A., Rahmann, T., Kuhr, M., Pogoda, P., Murach, D., & von Gadow, K. (2004). Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.). Plant and Soil, 264, 1–11.

    CAS  Google Scholar 

  • Bonnemann, A., & Röhrig, E. (1972). Waldbau auf ökologischer Grundlage. Hamburg: P. Parey.

    Google Scholar 

  • Braun, E. L. (1950). Deciduous forests of Eastern North America (596 pp). Philadelphia: The Blakiston Company.

    Google Scholar 

  • Brockmann-Jerosch, H., & Rübel, E. (1912). Die Einteilung von Pflanzengesellschaften nach ökologisch-physiognomischen Gesichtspunkten (72 pp). Leipzig: Engelmann.

    Google Scholar 

  • Brown, S., Schroeder, P., & Birdsey, R. (1997). Aboveground biomass distribution of US eastern hardwood forests and the use of large trees as an indicator of forest development. Forest Ecology and Management, 96, 37–47.

    Google Scholar 

  • Brumme, R., & Khanna, P. K. (Eds.). (2009a). Functioning and management of European Beech ecosystems (Ecological studies 208) (499 pp). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Brumme, R., & Khanna, P. K. (2009b). Stand, soil and nutrient factors determining the functioning and management of beech forest ecosystems: A synopsis. In R. Brumme & P. K. Khanna (Eds.), Functioning and management of European Beech ecosystems (Ecological studies 208) (pp. 459–490). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Burga, C. A., Klötzli, F., & Grabherr, G. (Eds.). (2004). Gebirge der Erde (504 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Burns, B. R. (1993). Fire-induced dynamics of Araucaria araucana-Nothofagus antarctica forest in the southern Andes. Journal of Biogeography, 20, 669–685.

    Google Scholar 

  • Cabrera, A. L. (1971). Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica, 14, 1–42.

    Google Scholar 

  • Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., & Schulze, E.-D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108, 583–595.

    CAS  PubMed  Google Scholar 

  • Carder, A. C. (1995). Forest giants of the world, past and present. Markham: Fitzhenry and Whiteside.

    Google Scholar 

  • Ching, K. K. (1991). Temperate deciduous forests in East Asia. In E. Röhrig & B. Ulrich (Eds.), Temperate deciduous forests (Ecosystems of the World 7) (pp. 539–555). Amsterdam: Elsevier.

    Google Scholar 

  • Chian, H., Yuan, X.-Y. & Chou, Y.-L. (2003). Forest Vegetation of Northeast China. In J. Kolbek, M. Šrůtek, & E. O. Box, (Eds.), Forest Vegetation of Northeast Asia. Geobotany, 28, 181–230.

    Google Scholar 

  • Chytrý, M., Danihelka, J., Ermakov, N., Hájek, M., Hájková, P., Kočí, M., Kubešová, S., Lustyk, P., Otýpková, Z., Popov, D., Roleček, J., Rezníčková, M., Šmarda, P., & Valachovič, M. (2007). Plant species richness in continental southern Siberia: Effects of pH and climate in the context of the species pool hypothesis. Global Ecology and Biogeography, 16, 668–678.

    Google Scholar 

  • Chytrý, M., Ermakov, N., Danihelka, J., Hájek, M., Hájková, P., Horsák, M., Koči, M., Kubešová, S., Lustyk, P., Otýpková, Z., Pelánková, B., Valachovič, M., & Zelený, D. (2012). High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia. Journal of Vegetation Science, 23, 605–616.

    Google Scholar 

  • Clements, D. R., DiTomaso, A., Jordan, N., Booth, B. D., Cardina, J., Doohan, D., Mohler, C. L., Murphy, S. D., & Swanton, C. J. (2004). Adaptability of plants invading north American cropland. Agriculture, Ecosystems and Environment, 104, 379–398.

    Google Scholar 

  • Cornelissen, J. H. C., Castro Diez, P., & Hunt, R. (1996). Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. Journal of Ecology, 84, 755–765.

    Google Scholar 

  • Cornell, H. V., & Harrison, S. P. (2014). What are species pools and when are they important? Annual Review of Ecology, Evolution, and Systematics, 45, 45–67.

    Google Scholar 

  • Cronk, Q. C. B., & Fuller, J. L. (1995). Plant invaders. The threat to natural ecosystems (241 pp). London: Chapman & Hall.

    Google Scholar 

  • Dai, L., Wang, Y., Su, D., Zhou, L., Yu, D., Lewis, B. J., & Qi, L. (2011). Major forest types and the evolution of sustainable forestry in China. Environmental Management, 48, 1066–1078.

    PubMed  Google Scholar 

  • DeAngelis, D. L., Gardner, R. H., & Shugart, H. H. (1981). Productivity of forest ecosystems studies during IBP: The woodland dataset. In D. E. Reichle (Ed.), Dynamic properties of forest ecosystems (pp. 567–672). Cambridge: Cambridge University Press.

    Google Scholar 

  • Delcourt, H. R., & Delcourt, P. A. (2000). Eastern deciduous forests. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 357–395). New York: Cambridge University Press.

    Google Scholar 

  • Dengler, J. (2005). Zwischen Estland und Portugal – Gemeinsamkeiten und Unterschiede der Phytodiversitätsmuster europäischer Trockenrasen. Tuexenia, 25, 387–405.

    Google Scholar 

  • Diekmann, M. (2004). Sommergrüne Laubwälder der boreo-nemoralen Zone Nordeuropas. Tuexenia, 24, 73–88.

    Google Scholar 

  • Dierschke, H. (1994). Pflanzensoziologie. Grundlagen und Methoden (683 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Dierschke, H. (2000). Phenological phases and phenological species groups of mesic beech forests and their suitability for climatological monitoring. Phytocoenologia, 30, 469, 240 pp–476.

    Google Scholar 

  • Dierschke, H. (2004). Sommergrüne Laubwälder (Querco-Fagetea s.lat.) in Europa – Einführung und Übersicht. Tuexenia, 24, 13–17.

    Google Scholar 

  • Dierschke, H., & Briemle, G. (2002). Kulturgrasland. Wiesen, Weiden und verwandte Staudenfluren (240 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • DiTomaso, J. M. (2000). Invasive weeds in rangelands: Species, impacts, and management. Weed Science, 48, 255–265.

    CAS  Google Scholar 

  • Doluchanov, A., & Nachucrišvili, G. (2003). Formation H: Hygrophile thermophytische Laubmischwälder. In U. Bohn, R. Neuhäusl, G. Gollub, C. Hettwer, Z. Neuhäuslová, T. Raus, H. Schlüter, & H. Weber (Eds.), Map of the natural vegetation of Europe. Scale 1:2.500.000 (pp. 384–388). Münster: Landwirtschaftsverlag.

    Google Scholar 

  • Domec, J.-C., Lachenbruch, B., Meinzer, F. C., Woodruff, D. R., Warren, J. M., & McCulloh, K. A. (2008). Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences of the United States of America, 105, 12069–12074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donoso, C. (1996). Ecology of Nothofagus forests in Central Chile. In T. T. Veblen, R. S. Hill, & J. Read (Eds.), The ecology and biogeography of Nothofagus forests (pp. 271–292). New Haven: Yale University Press.

    Google Scholar 

  • Donoso, C., Sandoval, V., Grez, R., & Rodríguez, J. (1993). Dynamics of Fitzroya cupressoides forests in southern Chile. Journal of Vegetation Science, 4, 303–312.

    Google Scholar 

  • Ellenberg, H. (1963). Vegetation Mitteleuropas mit den Alpen (1. Auflage, 943 pp.). Stuttgart: E. Ulmer.

    Google Scholar 

  • Ellenberg, H. (1988). Vegetation ecology of Central Europe (4th ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., & Werner, W. (2001). Zeigerwerte von Pflanzen in Mitteleuropa. 3 (p. 262 S). Göttingen: Auflage. Verlag Goltze.

    Google Scholar 

  • Ermakov, N., Dring, J., & Rodwell, J. (2000). Classification of continental hemiboreal forests of North Asia. Braun-Blanquetia, 28, 131 pp.

    Google Scholar 

  • Eskuche, U. (1973). Estudios fitosociológicos en el Norte de Patagonia. I. Investigacion de algunos factores de ambiente en comunidades de bosque y de chaparral. Phytocoenologia, 1, 64–113.

    Google Scholar 

  • Eskuche, U. (1999). Estudios fitosociológicos en el norte de la Patagonia. II. Los bosques del Nothofagion dombeyi. Phytocoenologia, 29, 177–252.

    Google Scholar 

  • Ewald, J. (2003). The calcareous riddle: Why are there so many calciphilous species in the Central European Flora? Folia Geobotanica, 38, 357–366.

    Google Scholar 

  • Fajardo, A., & Gonzales, M. E. (2009). Replacement patterns and species coexistence in an Andean Araucaria-Nothofagus forest. Journal of Vegetation Science, 20, 1176–1190.

    Google Scholar 

  • Falkengren-Grerup, U., & Tyler, G. (1993). Experimental evidence for the relative sensitivity of deciduous forest plants to high soil acidity. Forest Ecology and Management, 60, 311–326.

    Google Scholar 

  • Farjon, A. (2018). Pines (2nd revised edition, 235 pp). Brill.

    Google Scholar 

  • Finck, M., & Paulsch, A. (1995). Araucaria araucana. Die ökologische Strategie einer Reliktkonifere. Flora, 190, 365–382.

    Google Scholar 

  • Finckh, M. (1996). Die Wälder des Villarrica-Nationalparks (Südchile) – Lebensgemeinschaften als Grundlage für ein Schutzkonzept. Dissertationes Botanicae 259, 181 pp.

    Google Scholar 

  • Fittkau, E. J., & Klinge, H. (1973). On biomass and trophic structure of the Central Amazonian rain forest ecosystem. Biotropica, 5, 1–14.

    Google Scholar 

  • Franklin, J. F., & Dyrness, C. T. (1973). Natural vegetation of Oregon and Washington (452 pp). Corvallis: Oregon State University Press.

    Google Scholar 

  • Franklin, J. F., & Halpern, C. B. (2000). Pacific northwest forests. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 123–159). New York: Cambridge University Press.

    Google Scholar 

  • Franklin, J. F., Spies, T. A., Van Pelt, R., Carey, A. B., Thornburgh, D. A., Berg, D. R., Lindenmayer, D. B., Harmon, M. E., Keeton, W. S., Shaw, D. C., Bible, K., & Chen, J. (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management, 155, 399–423.

    Google Scholar 

  • Freiberg, H.-M. (1985). Vegetationskundliche Untersuchungen an chilenischen Vulkanen. Bonner Geographische Abhandlungen, 70(170).

    Google Scholar 

  • Frenzel, B., Pécsi, M., & Velichko, A. A. (Eds.). (1992). Atlas of paleoclimates and paleoenvironments of the northern hemisphere. Budapest/Stuttgart: Geographical Research Institute/G. Fischer.

    Google Scholar 

  • Fujimori, T. (1971). Primary productivity of a young Tsuga heterophylla stand and some speculations about biomass of forest communities on the Oregon Coast. U.S. Forest Service Research Paper PNBW-123, 1–11.

    Google Scholar 

  • Garibaldi, A., & Turner, N. (2004). Cultural keystone species: Implications for ecological conservation and restoration. Ecology and Society, 9, 1. (online). URL: http://www.ecologyandsociety.org/vol9/iss3/art1/

  • Gäumann, E. (1935). Der Stoffhaushalt der Buche (Fagus sylvatica) im Lauf eines Jahres. Berichte der Schweizerischen Botanischen Gesellschaft, 44, 157–334.

    Google Scholar 

  • Gigon, A. (1987). A hierarchic approach in causal ecosystem analysis. The calcifuge-calcicole problem in alpine grasslands. Ecological Studies, 61, 228–244.

    Google Scholar 

  • Gigon, A., & Leutert, A. (1996). The dynamic keyhole-key model of coexistence to explain diversity of plants in limestone and other grasslands. Journal of Vegetation Science, 7, 29–40.

    Google Scholar 

  • Gilliam, F. S. (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 57, 845–858.

    Google Scholar 

  • Gonzales, M. E., Veblen, T. T., & Sibold, J. S. (2005). Fire history of Araucaria-Nothofagus-forests in Villarrica National Park, Chile. Journal of Biogeography, 32, 1187–1202.

    Google Scholar 

  • Gottschling, H., Amatov, I., & Lazkov, G. (2005). Zur Ökologie und Flora der Walnuss-Wildobst-Wälder in Süd-Kirgistan. Archiv für Naturschutz und Landschaftsforschung, 44, 85–129.

    Google Scholar 

  • Graves, J. H., Peet, R. K., & White, P. S. (2006). The influence of carbon-nutrient balance on herb and woody plant abundance in temperate forest understories. Journal of Vegetation Science, 17, 217–226.

    Google Scholar 

  • Grime, J. P. (1986). Plant strategies and vegetation processes (222 pp). Chichester: Wiley.

    Google Scholar 

  • Hancock, J. F. (2004). Plant evolution and the origin of crop species (2nd ed., 313 pp). Wallingford: CABI Publishing.

    Google Scholar 

  • Härdtle, W., von Oheimb, G., & Westphal, C. (2003). The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany (Schleswig-Holstein). Forest Ecology and Management, 182, 327–338.

    Google Scholar 

  • Heckman, C. W. (1999). The encroachment of exotic herbaceous plants into the Olympic National Forest. Northwest Science, 73, 264–276.

    Google Scholar 

  • Heusser, G. J. (1994). Paleoindians and fire during the late quaternary in southern South America. Revista Chilena de Historia Natural, 67, 435–442.

    Google Scholar 

  • Hierro, J. L., Maron, J. L., & Callaway, R. M. (2005). A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology, 93, 5–15.

    Google Scholar 

  • Hildebrand-Vogel, R. (2002). Structure and dynamics of southern Chilean natural forests with special reference to the relation of evergreen versus deciduous elements. Folia Geobotanica, 37, 107–128.

    Google Scholar 

  • Hildebrand-Vogel, R., & Vogel, A. (1995). Evergreen broad-leaved forests of southern South America. In E. O. Box, R. K. Peet, T. Masuzawa, I. Yamada, K. Fujiwara, & P. F. Maycock (Eds.), Vegetation science in forestry (Handbook of vegetation science 12/1) (pp. 125–140). Dordrecht: Kluwer.

    Google Scholar 

  • Hildebrand-Vogel, R., Godoy, R., & Vogel, A. (1990). Subantarctic-Andean Nothofagus pumilio forests. Vegetatio, 89, 55–68.

    Google Scholar 

  • Horvat, I., Glavač, V., & Ellenberg, H. (1974). Vegetation Südosteuropas (p. 752). Stuttgart: G. Fischer.

    Google Scholar 

  • Huber, U., & Markgraf, V. (2003). Holocene fire frequency and climate change at Rio Rubens bog, Southern Patagonia. In T. T. Veblen, W. L. Baker, G. Montenegro, & T. W. Swetnam (Eds.), Fire regimes and Climatic change in temperate ecosystems of the Western Americas (pp. 357–380). New York: Springer.

    Google Scholar 

  • Hueck, K. (1966). Die Wälder Südamerikas (422 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Ismailova, D. M., & Nazimova, D. I. (2010). Long-term dynamics of mixed fir-aspen forests in West Sayan (Altai-Sayan ecoregion). In H. Balzter (Ed.), Environmental change in Siberia. Earth observations, field studies and modelling (pp. 37–51). Dordrecht: Springer.

    Google Scholar 

  • Ito, I. (1990). Managed grassland in Japan. In A. I. Breymeyer (Ed.), Managed grassland. Regional studies (Ecosystems of the World 17A) (pp. 129–148). Oxford: Elsevier.

    Google Scholar 

  • Jacob, M., Leuschner, C., & Thomas, F. M. (2010). Productivity of temperate broad-leaved forest stands differing in tree species diversity. Annals of Forest Science, 67, 503, 9 pp.

    Google Scholar 

  • Jäger, E. J. (1988). Möglichkeiten der Prognose synanthroper Pflanzenausbreitungen. Flora, 180, 101–131.

    Google Scholar 

  • Juniper, B. E., & Mabberley, D. J. (2006). The story of the apple (219 pp). Portland: Timber Press.

    Google Scholar 

  • Keeley, J. E. (2006). Fire management impacts on invasive plants in the Western United States. Conservation Biology, 20, 375–384.

    PubMed  Google Scholar 

  • Kelly, D., & Sork, V. L. (2002). Mast seeding in perennial plants: Why, how, where? Annual Review of Ecology and Systematics, 33, 427–447.

    Google Scholar 

  • Kinzel, H. (1982). Pflanzenökologie und Mineralstoffwechsel (534 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Klötzli, F. (1975). Edellaubwälder im Bereich der südlichen Nadelwälder Schwedens (Vol. 43, pp. 23–53). Stiftung Rübel: Berichte Geobotanisches Institut an der ETH Zürich.

    Google Scholar 

  • Klötzli, F., Dietl, W., Marti, K., Schubiger-Bosshard, C., & Walther, G.-R. (2010). Vegetation Europas. Das Offenland im vegetationskundlich-ökologischen Überblick unter besonderer Berücksichtigung der Schweiz (1190 pp). Bern: Hep.

    Google Scholar 

  • Knapp, R. (1965). Die Vegetation von Nord- und Mittelamerika und der Hawaii-Inseln (373 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Knöss, W., Reh, K., & Bodemann, S. (2011). Pflanzliche Arzneimittel in Deutschland – Tonica und Stärkungsmittel. Zeitschrift für Phytotherapie, 32, 164–166.

    Google Scholar 

  • Koch, W. G., Sillett, S. C., Jennings, G. M., & Davis, S. D. (2004). The limits to tree height. Nature, 428, 851–854.

    CAS  PubMed  Google Scholar 

  • Kolbek, J., Šrůtek, M., & Box, E. O. (Eds.). (2003). Forest vegetation of Northeast Asia (Geobotany 28) (462 pp). Dordrecht: Kluwer.

    Google Scholar 

  • Körner, C. (2012). Alpine treelines. Functional ecology of the global high elevation tree limits (220 pp). Basel: Springer.

    Google Scholar 

  • Korpel, S. (1995). Die Urwälder der Westkarpaten (310 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Kowarik, I. (2010). Biologische Invasionen: Neophyten und Neozoen in Mitteleuropa (2nd ed., 492 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Krestov, P. (2003). Forest vegetation of easternmost Russia (Russian Far East). In J. Kolbek, M. Šrůtek, & E. O. Box (Eds.), Forest Vegetation of Northeast Asia (pp. 93–180). Dordrecht: Kluwer.

    Google Scholar 

  • Kuiper, L. C. (1994) Architectural analysis of Douglas-fir forests (186 pp). PHD thesis, Wageningen Agricultural University.

    Google Scholar 

  • Lang, G. (1994). Quartäre Vegetationsgeschichte Europas. Methoden und Ergebnisse (462 pp). Jena: G. Fischer.

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology (4th ed., 513 pp). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Leuschner, C., & Ellenberg, H. (2017). Ecology of Central European non-forest vegetation: Coastal to alpine, natural to man-made habitats (1093 pp). Springer Nature.

    Google Scholar 

  • Li, C., Juntilla, O., & Palva, E. T. (2004). Environmental regulation and physiological basis of freezing tolerance in woody plants. Acta Physiologicae Plantarum, 26, 213–222.

    Google Scholar 

  • Lieberei, R., & Reisdorff, C. (2007). Nutzpflanzenkunde. 7., vollständig überarbeitete und erweiterte Auflage. Georg Thieme Verlag, Stuttgart-New York, 476 S.

    Google Scholar 

  • Lieth, H., Berlekamp, J., Fuest, S., & Riediger, S. (1999). Climate diagram world atlas (CD-ROM). Leiden: Backhuys Publ.

    Google Scholar 

  • López-Pujol, J., Zhang, F.-M., & Ge, S. (2006). Plant biodiversity in China: Richly varied, endangered, and in need of conservation. Biodiversity and Conservation, 15, 3983–4026.

    Google Scholar 

  • Lotan, J. E., & Critchfield, W. B. (1990). Pinus contorta Dougl. ex Loud. In R. M. Burns & B. H. Honkala (Eds.), Silvics of North America. 1. Conifers. Agricultural handbook 654 (pp. 302–315). Washington, DC: USDA Forest Service.

    Google Scholar 

  • Luo, Y., Wang, X., Zhang, X., Booth, T. H., & Lu, F. (2012). Root/shoot ratios across China’s forests: Forest type and climatic effects. Forest Ecology and Management, 269, 19–25.

    Google Scholar 

  • Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichsstein, M., et al. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509–2537.

    Google Scholar 

  • Mabberley, D. J. (2017). Mabberley’s plant-book (4th ed., 1102 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mai, D. H. (1995). Tertiäre Vegetationsgeschichte Europas. Methoden und Ergebnisse (691 pp). Jena: VEB G. Fischer.

    Google Scholar 

  • Markgraf, V., Romero, E., & Villagran, C. (1996). History and paleoecology of South American Nothofagus forests. In T. T. Veblen, R. S. Hill, & J. Read (Eds.), Ecology and biogeography of Nothofagus forests (pp. 354–386). New Haven: Yale University Press.

    Google Scholar 

  • Mayer, H. (1984). Wälder Europas (p. 691). Stuttgart: G. Fischer.

    Google Scholar 

  • Mayer, H., & Aksoy, H. (1986). Wälder der Türkei (p. 290). Stuttgart: G. Fischer.

    Google Scholar 

  • Meng, S. X., Lieffers, V. J., Reid, D. E. B., Rudnicki, M., & Jin, M. (2006). Reducing stem bending increases the height growth of tall pines. Journal of Experimental Botany, 57, 3175–3182.

    CAS  PubMed  Google Scholar 

  • Menzel, A. (2003). Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climatic Change, 57, 243–263.

    Google Scholar 

  • Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Keubler, K., Bissolli, P., Braslavská, O. G., Briede, A., et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.

    Google Scholar 

  • Meusel, H., Jäger, E., & Weinert, E. (1965–1992). Vergleichende Chorologie der zentraleuropäischen Flora (4 Bände). Jena: VEB G. Fischer.

    Google Scholar 

  • Miyawaki, A. (1980–1989). Vegetation of Japan (10 Vols.). Shibundo: Tokyo.

    Google Scholar 

  • Moles, A. T., Warton, D. I., Warma, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., Pitman, A., Hemmings, F. A., & Leishman, M. R. (2009). Global patterns in plant height. Journal of Ecology, 97, 923–932.

    Google Scholar 

  • Morin, X., Fahse, L., Scherer-Lorenzen, M., & Bugmann, H. (2007). Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters, 14, 1211–1219.

    Google Scholar 

  • Mucina, L., Grabherr, G., Ellmauer, T., & Wallnöfer, S. (1993). Die Pflanzengesellschaften Österreichs. Teil I-III. Jena: G. Fischer.

    Google Scholar 

  • Müller, N. (2005). Biologischer Imperialismus – zum Erfolg von Neophyten in Großstädten der alten und neuen Welt. Artenschutzreport, 18, 49–63.

    Google Scholar 

  • Nakamura, Y., & Krestov, P. V. (2005). Coniferous forests of the temperate zone of Asia. In F. Andersson (Ed.), Coniferous forests (Ecosystems of the World 6) (pp. 163–220). Amsterdam: Elsevier.

    Google Scholar 

  • Nilsson, S.-G., & Baranowski, R. (1997). Habitat predictability and the occurrence of wood beetles in old-growth beech forests. Ecography, 20, 491–498.

    Google Scholar 

  • Noss, R. F. (2000). The Redwood forest (339 pp). Washington, DC: Island Press.

    Google Scholar 

  • Numata, M. (1974). The flora and vegetation of Japan (294 pp). Tokyo: Kodansha.

    Google Scholar 

  • Nuzzo, V. (1999). Invasion pattern of the herb garlic mustard (Alliaria petiolata) in high quality forests. Biological Invasions, 1, 169–179.

    Google Scholar 

  • Oberdorfer, E. (1960). Pflanzensoziologische Studien in Chile – ein Vergleich mit Europa. Flora et Vegetatio Mundi, 2, 208 pp.

    Google Scholar 

  • Oberdorfer, E. (2001). Pflanzensoziologische Exkursionsflora für Deutschalnd und die angrenzenden Gebiete (8th ed., 1056 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Ogureeva, G. N., Gorčakowskij, P. L., & Bohn, U. (2003). Formation F.4 Winterlinden-Stieleichenwälder (Quercus robur, Tilia cordata, z. T. Acer platanoides, A. campestre, Ulmus glabra). In U. In Bohn, R. Neuhäusl, G. Gollub, C. Hettwer, Z. Neuhäuslová, T. Raus, H. Schlüter, & H. Weber (Eds.), Map of the natural vegetation of Europe. Scale 1:2.500.000. Landwirtschaftsverlag (pp. 300–309). Münster.

    Google Scholar 

  • Okitsu, S. (2003). In J. Kolbek, M. Šrůtek, & E. O. Box (Eds.). Forest vegetation of Northeast Asia Forest vegetation of northern Japan and the southeren Kurils (pp. 231–261). Dordrecht: Kluwer Academic Publ.

    Google Scholar 

  • Palmer, M. W., Arévalo, J. R., del Carmen Cobo, M., & Earls, P. G. (2003). Species richness and soil reaction in a northeastern Oklahoma landscape. Folia Geobotanica, 38, 381–389.

    Google Scholar 

  • Pärtel, M. (2002). Local plant diversity patterns and evolutionary history at the regional scale. Ecology, 83, 2361–2366.

    Google Scholar 

  • Peet, R. K. (1981). Changes in biomass and production during secondary forest succession. In D. C. West, H. H. Shugart, & D. B. Botkin (Eds.), Forest succession. Concepts and application (pp. 324–388). New York: Springer.

    Google Scholar 

  • Peet, R. K. (2000). Forests and meadows of the Rocky Mountains. In M. G. Barbour & W. D. Billings (Eds.), North American terrestrial vegetation (2nd ed., pp. 75–121). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pollmann, W. (2001). Vegetationsökologie und Dynamik temperierter Nothofagus alpina-Wälder im südlichen Südamerika (Chile, Argentinien) (278 pp). Dissertationes Botanicae 348.

    Google Scholar 

  • Pott, R. (1995). Die Pflanzengesellschaften Deutschlands (2nd ed., 622 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Powers, R. F., Adams, M. B., Joslin, J. D., & Fiske, J. N. (2005). Non-boreal coniferous forests of North America. In F. Andersson (Ed.), Coniferous forests (Ecosystem of the World 6) (pp. 221–292). Amsterdam: Elsevier.

    Google Scholar 

  • Prati, D., & Bossdorf, O. (2004). Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). American Journal of Botany, 91, 285–288.

    PubMed  Google Scholar 

  • Pretzsch, H. (2005). Diversity and Productivity in Forests: Evidence from Long-Term Experimental Plots. In M. Scherer-Lorenzen, C. Körner & E.-D. Schulze (Eds.), Forest Diversity and Function: Temperate and Boreal Systems. Ecological Studies, 176, 41–64.

    Google Scholar 

  • Pretzsch, H., & Schütze, G. (2015). Effect of tree species mixing on the size structure, density, and yield of forest stands. European Journal of Forestry Research, 135, 1–22.

    Google Scholar 

  • Průša, E. (1985). Die böhmischen und mährischen Urwälder – ihre Struktur und Ökologie (578 pp). Praha: Academia Verlag der Tschechoslowakischen Akademie der Wissenschaften.

    Google Scholar 

  • Rademacher, P., Khanna, P. K., Eichhorn, J., & Guericke, M. (2009). Tree growth, biomass, and elements in tree components of three beech sites. In R. Brumme & P. K. Khanna (Eds.), Functioning and management of European Beech ecosystems (Ecological Studies 208) (pp. 105–136). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Ramirez, C., Correa, M., Figueroa, H., & San Martin, J. (1985). Variación del hábito y habitat de Nothofagus antarctica en el centro sur de Chile. Bosque, 6, 55–73.

    Google Scholar 

  • Reid, J. B., Hill, R. S., Brown, M. J., & Hovenden, M. J. (Eds.). (2005). Vegetation of Tasmania (456 pp). Canberra: Australian Biological Resources Study.

    Google Scholar 

  • Rejmánek, M., Richardson, D. M., Higgins, S. I., Pitcairn, M. J., & Grotkopp, E. (2005a). Ecology of invasive plants: State of the art. In H. A. Mooney, R. N. Mack, J. A. McNeely, L. E. Neveille, P. J. Schei, & J. K. Waage (Eds.), Invasive alien species. A new synthesis (pp. 104–162). Washington: Island Press.

    Google Scholar 

  • Rejmánek, M., Richarson, D. M., & Pyšek, P. (2005b). Plant invasions and invasibility of plant communities. In E. Van der Maarel (Ed.), Vegetation ecology (pp. 332–355). Oxford: Blackwell Publ.

    Google Scholar 

  • Richardson, D. M., Pyšek, P., Rejmánek, M., Barbour, M. G., Panetta, F. D., & West, C. J. (2000). Naturalization and invasion of alien plants: Concepts and definitions. Diversity and Distributions, 6, 93–107.

    Google Scholar 

  • Ricketts, T. H., Dinerstein, E., Olson, D. M., Loucks, C. J., Eichbaum, W., DellaSala, D., Kavanagh, K., Hedao, P., Hurley, P. T., Carney, K. M., Abell, R., & Walters, S. (1999). Terrestrial ecoregions of North America. A conservation assessment (483 pp). Washington, DC: Island Press.

    Google Scholar 

  • Rodwell, J. S. (Ed.). (1991). British plant communities (Vol. 1, 395 pp). Woodlands and Scrubs: Cambridge University Press, Cambridge.

    Google Scholar 

  • Röhrig, E. (1991). Biomass and productivity. In E. Röhrig & B. Ulrich (Eds.), Temperate deciduous forests (Ecosystems of the World 7) (pp. 165–174). Amsterdam: Elsevier.

    Google Scholar 

  • Röhrig, E., & Ulrich, B. (Eds.). (1991). Temperate deciduous forests (Ecosystems of the World 7) (635 p). Amsterdam: Elsevier.

    Google Scholar 

  • Roig, F. A., Anchorena, J., Dollenz, O., Faggi, A. M., & Méndez, E. (1985). Las comunidades vegetales de la Transecta Botánica de la Patagonia Austral. Primera parte: La vegetacion del area continental. In O. Boelke, D. M. Moore, & F. A. Roig (Eds.), Transecta botánica de la Patagonia Austral (pp. 350–456). Buenos Aires: Consejo Nacional de Investigaciones Cientificas y Téchnicas.

    Google Scholar 

  • Romero, E. J. (1986). Fossil evidence regarding the evolution of Nothofagus Blume. Annals of the Missouri Botanical Garden, 73, 276–283.

    Google Scholar 

  • Rosenkranz, F. (1951). Grundzüge der Phänologie (69 pp). Wien: Fromme.

    Google Scholar 

  • Rötzer, T., Würländer, R., & Häckel, H. (1997). Umwelt- und agrarklimatologischer Atlas von Bayern (CD-ROM-Fassung). Offenbach: Deutscher Wetterdienst.

    Google Scholar 

  • Runge, M., & Rode, M. (1991). Effects of soil acidity on plant associations. In B. Ulrich & M. E. Sumner (Eds.), Soil acidity (pp. 401–411). Berlin: Springer.

    Google Scholar 

  • Runkle, J. R. (1982). Patterns of disturbance in some old-growth mesic forests of eastern North America. Ecology, 63, 1533–1546.

    Google Scholar 

  • Ryan, M. G., Phillips, N., & Bond, B. J. (2006). The hydraulic limitation hypothesis revisited. Plant Cell and Environment, 29, 367–381.

    Google Scholar 

  • Sakai, A., Paton, D. M., & Wardle, P. (1981). Freezing resistance of trees of the south temperate zone, especially subalpine species of Australasia. Ecology, 62, 563–570.

    Google Scholar 

  • Satake, Y., Hara, H., Watari, S., & Tominari, T. (1989). Wild flowers of Japan: Woody plants (Volumes 1 and 2, 305 pp. and 318 pp). Tokyo: Heibonsha Publishers.

    Google Scholar 

  • Satoo, T. (1970). A Synthesis of Studies by the Harvest Method: Primary Production Relations in the Temperate Deciduous Forests of Japan. In D. E. Reichle (Ed.), Analysis of Temperate Forest Ecosystems. Ecological Studies, 1, 55–72.

    Google Scholar 

  • Scarascia-Mugnozza, G., Bauer, G. A., Persson, H., Matteucci, G., & Masci, A. (2000). Tree biomass, growth and nutrient pools. In E.-D. Schulze (Ed.), Carbon and nitrogen cycling in European forest ecosystems (Ecological studies 142) (pp. 49–62). Berlin: Springer.

    Google Scholar 

  • Schmidt, W. (2009). Vegetation. In R. Brumme & P. K. Khanna (Eds.), Functioning and management of European Beech ecosystems (Ecological studies 208) (pp. 65–86). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Schmidt, I., Leuschner, C., Mölder, A., & Schmidt, W. (2009). Structure and composition of the seed bank in monospecific and tree species-rich temperate broad-leaved forests. Forest Ecology and Management, 257, 695–702.

    Google Scholar 

  • Schmithüsen, J. (1956). Die räumliche Ordnung der chilenischen Vegetation. Bonner Geographische Abhandlungen, 17, 1–89.

    Google Scholar 

  • Schmithüsen, J., Hanle, A., & Hegner, R. (1976). Atlas zur Biogeographie. Wien/Zürich: Bibliographisches Institut Mannheim.

    Google Scholar 

  • Schnelle, F. (1955). Pflanzen-Phänologie (299 pp). Leipzig: Akademische Verlagsgesellschaft Geest & Portig.

    Google Scholar 

  • Scholz, H. (2007). Questions about indigenous plants and anecophytes. Taxon, 56, 1255–1260.

    Google Scholar 

  • Schreiber, K.-F. (1977). Wärmegliederung der Schweiz 1:200.000 mit Erläuterungen (69 pp). Bern: Grundlagen der Raumplanung.

    Google Scholar 

  • Schroeder, F.-G. (1998). Lehrbuch der Pflanzengeographie (457 pp). Wiesbaden: Quelle & Meyer.

    Google Scholar 

  • Schultz, J. (2000). Handbuch der Ökozonen (577 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Schultz, J. (2005). The Ecozones of the World (Vol. 252, 2nd ed.). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., & Scherer-Lorenzen, M. (2019). Plant ecology (2nd ed., 910 pp). Berlin: Springer Nature.

    Google Scholar 

  • Schwabe, A., & Kratochwil, A. (2004). Festucetalia valesiacae communities and xerothermic vegetation complexes in the Central Alps related to environmental factors. Phytocoenologia, 34, 329–446.

    Google Scholar 

  • Sebald, O. (1956). Über Wachstum und Mineralstoffgehalt von Waldpflanzen in Wasser- und Sandkulturen bei abgestufter Azidität. Mitteilungen der Württembergischen Forstlichen Versuchsanstalt, 13, 3–83.

    Google Scholar 

  • Seibert, P. (1996). Farbatlas Südamerika. Landschaften und Vegetation (288 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Shakeri, Z., Mohadjer, M. R. M., Simberloff, D., Etemad, V., Assadi, M., Donath, T. W., Otte, A., & Eckstein, R. L. (2012). Plant community composition and disturbance in Caspian Fagus orientalis forests: Which are the main driving factors? Phytocoenologia, 41, 247–263.

    Google Scholar 

  • Simonin, K. A., Santiago, L. S., & Dawson, T. E. (2009). Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant, Cell and Environment, 32, 882–892.

    PubMed  Google Scholar 

  • Song, Y.-C. (1983). Die räumliche Ordnung der Vegetation Chinas. Tuexenia, 3, 131–157.

    Google Scholar 

  • Steinke, L. R., Premoli, A. C., Souto, C. P., & Hedrén, M. (2008). Adaptive and neutral variation of the resprouter Nothofagus antarctica growing in distinct habitats in North-Western Patagonia. Silva Fennica, 42, 177–188.

    Google Scholar 

  • Stewart, R. J., Toma, Y., Fernández, F. G., Nishiwaki, A., Yamada, T., & Bollero, G. (2009). The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: A review. Global Change Biology Bioenergy, 1, 126–153.

    Google Scholar 

  • Stinson, G., Kurz, W. A., Smyth, C. E., Neilson, E. T., Dymond, C. C., Metsaranta, J. M., Boisvenue, C., Rampley, G. J., Li, Q., White, T. M., & Blains, D. (2011). An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 17, 2227–2244.

    PubMed Central  Google Scholar 

  • Thompson, J. D. (1991). The biology of an invasive plant. What makes Spartina anglica so successful? Bioscience, 41, 393–401.

    Google Scholar 

  • Tng, D. Y. P., Williamson, G. J., Jordan, G. J., & Bowman, D. M. J. S. (2012). Giant eucalypts – Globally unique fire-adapted rain-forest trees? New Phytologist, 196, 1001–1014.

    Google Scholar 

  • Tyler, G., & Ström, L. (1995). Differing organic acid exudation pattern explains calcifuge and acidifuge behaviour of plants. Annals of Botany, 75, 75–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Gelderen, D. M., de Jong, P. C., & Oterdom, H. J. (1994). Maples of the World (458 pp). Portland: Timber Press.

    Google Scholar 

  • Van Pelt, R. (2001). Forest giants of the Pacific coast (200 pp). Vancouver/San Francisco: Global Forest Society.

    Google Scholar 

  • Van Pelt, R., & Franklin, J. F. (2000). Influence of canopy structure on the understory environment in tall, old growth, conifer forests. Canadian Journal of Forest Research, 30, 1231–1245.

    Google Scholar 

  • Veblen, T. T. (2007). Temperate forests of the southern Andean region. In T. T. Veblen, K. R. Young, & A. R. Orme (Eds.), The physical geography of South America (pp. 217–231). New York: Oxford University Press.

    Google Scholar 

  • Veblen, T. T., Ashton, D. H., & Schlegel, E. M. (1979). Tree regeneration strategies in a lowland Nothofagus-dominated forest in south-central Chile. Journal of Biogeography, 6, 329–340.

    Google Scholar 

  • Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A., & Villalba, R. (1995). The ecology of the conifers of southern South America. In N. J. Enright & R. S. Hill (Eds.), Ecology of the southern conifers (pp. 120–155). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Veblen, T. T., Hill, R. S., & Read, J. (Eds.). (1996). The ecology and biogeography of Nothofagus forests (403 pp). New Haven/London: Yale University Press.

    Google Scholar 

  • Veblen, T. T., Armesto, J. J., Burns, B. R., Kitzberger, T., Lara, A., León, B., & Young, K. R. (2005). The coniferous forests of South America. In F. A. Andersson (Ed.), Coniferous forests (Ecosystems of the World 6) (pp. 701–725). Amsterdam: Elsevier.

    Google Scholar 

  • Villagrán, C., 1980: Vegetationsgeschichtliche und pflanzensoziologische Untersuchungen im Vicente-Pérez-Rosales-Nationalpark (Chile) (165 pp). Dissertationes Botanicae 54.

    Google Scholar 

  • Von Oheimb, G., & Härdtle, W. (2009). Selection harvest in temperate deciduous forests: Impact on herb layer richness and composition. Biodiversity and Conservation, 18, 271–287.

    Google Scholar 

  • Von Oheimb, G., Westphal, C., Tempel, H., & Härdtle, W. (2005). Structural pattern of a near-natural beech forest (Fagus sylvatica) (Serrahn, North-east Germany). Forest Ecology and Management, 212, 253–263.

    Google Scholar 

  • Wadgymar, S. M., Ogilvie, J. E., Inouye, D. W., Weis, A. E., & Anderson, J. T. (2018). Phenological responses to multiple environmental drivers under climate change: Insights from a long-term observational study and a manipulative field experiment. New Phytologist, 218, 517–529.

    PubMed  Google Scholar 

  • Walter, H. (1974). Die Vegetation Osteuropas, Nord- und Zentralasiens (452 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Walter, H., Breckle, S.-W., Hager, J., Loris, K., & Miehe, G. (1991). Ökologie der Erde. Band 4. Gemäßigte und arktische Zonen außerhalb Euro-Nordasiens (586 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Walter, H., Breckle, S.-W., Agachajanz, O., & Rahmann, M. (1994). Ökologie der Erde. Band 3. Spezielle Ökologie der Gemäßigten und Arktischen Zonen Euro-Nordasiens (2nd ed., 726 pp). Stuttgart/Jena: G. Fischer.

    Google Scholar 

  • Walther, G.-R. (2002). Weakening of climate constraints with global warming and its consequences for evergreen broad-leaved species. Folia Geobotanica, 37, 129–139.

    Google Scholar 

  • Wang, C. W. (1961). The forests of China (Maria Moors Cabot Foundation Publication series no. 5) (313 pp). Cambridge: Harvard University.

    Google Scholar 

  • Warda, H.-D. (1998). Das große Buch der Garten- und Landschaftsgehölze (864 pp). Bad Zwischenahn: Bruns Pflanzen GmbH.

    Google Scholar 

  • Wardle, P. (1991). Vegetation of New Zealand (Reprint 2002) (672 pp). Caldwell: The Blackburn Press.

    Google Scholar 

  • Wardle, P. (1998). Comparison of alpine timberlines in New Zealand and the Southern Andes. Royal Society of New Zealand Miscellaneous Publications, 48, 69–90.

    Google Scholar 

  • Waring, R. H., & Franklin, J. F. (1979). Evergreen coniferous forests of the Pacific Northwest. Science, 204, 1380–1386.

    CAS  PubMed  Google Scholar 

  • Waring, R., Nordmeyer, A., Whitehead, D., Hunt, J., Newton, M., Thomas, C., & Irvine, J. (2008). Why is the productivity of Douglas-fir higher in New Zealand than in its native range in the Pacific-Northwest, USA? Forest Ecology and Management, 255, 4040–4046.

    Google Scholar 

  • Weischet, W. (1978). Die ökologisch wichtigen Charakteristika der kühl-gemässigten Zone Südamerikas mit vergleichenden Anmerkungen zu den tropischen Hochgebirgen. In C. Troll & W. Lauer (Eds.), Geoökologische Beziehungen zwischen der temperierten Zone der Südhalbkugel und den Tropengebirgen. Proceedings of the Symposium of the International Geographical Union, Nov. 21–23, 1974 Mainz (pp. 255–280). Wiesbaden: F. Steiner.

    Google Scholar 

  • Welling, A., & Palva, E. T. (2006). Molecular control of cold acclimation in trees. Physiologia Plantarum, 127, 167–181.

    CAS  Google Scholar 

  • Whittaker, R. H. (1970). Communities and ecosystems (162 pp). London: The Macmillan Company.

    Google Scholar 

  • Whittaker, R. H., & Woodwell, G. M. (1968). Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. Journal of Ecology, 56, 1–25.

    Google Scholar 

  • Willner, W. (2002). Syntaxonomische Revision der Südmitteleuropäischen Buchenwälder. Phytocoenologia, 32, 337–453.

    Google Scholar 

  • Woodward, S. A., Vitousek, P. M., Matson, K., Hughes, F., Benvenuto, K., & Matson, P. A. (1990). Use of the exotic tree Myrica faya by native and exotic birds in Hawaii Volcanoes National Park. Pacific Science, 44, 88–93.

    Google Scholar 

  • Wu, J. Y. (Ed.). (1980). Vegetation cover of China (1375 pp). Beijing: Scientific Publication.

    Google Scholar 

  • Yazaki, Y., Mariko, S., & Koizumi, H. (2004). Carbon dynamics and budget in a Miscanthus sinensis grassland in Japan. Ecological Research, 19, 511–520.

    Google Scholar 

  • Zech, W., Schad, P., & Hintermaier-Erhard, G. (2014). Böden der Welt: Ein Bildatlas (2nd ed., 152 pp). Berlin/Heidelberg: Springer Spektrum.

    Google Scholar 

  • Zhang, Y., Chen, H. Y. H., & Reich, P. B. (2012). Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis. Journal of Ecology, 100, 742–749.

    Google Scholar 

  • Zobel, M., Van der Maarel, E., & Dupré, C. (1998). Species pool: The concept, its determination and significance for community restoration. Applied Vegetation Science, 1, 55–66.

    Google Scholar 

  • Zohary, D., & Hopf, M. (2000). Domestication of Plants in the Old World (Vol. 316, 3rd ed.). New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Zonal Vegetation of the Humid Nemoral (Cool–Temperate) Zone. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_11

Download citation

Publish with us

Policies and ethics