Skip to main content

Vegetation of the Tropical High Mountains

  • Chapter
  • First Online:
Global Vegetation

Abstract

In the tropical high mountains with year-round rain, lowland rainforests are followed by oreo-tropical laurophyllous mountain rainforests with a high proportion of lianas and epiphytes. Above the cloud condensation zone, where precipitation is distinctly lower, oreo-tropical heath forests often occur. In the alpine belt, grassland composed of temperate tussock grasses and giant rosette plants dominates, whereas in the dry tropical high mountains, there are mainly high mountain steppes, shrub and grass semi-deserts and deserts. Prickly grasses and hard cushion plants are characteristic. Salt pans form in the most arid regions. Despite the alpine belt being situated above 4000–5000 m a.s.l., the thousands of years of settlement history have left noticeable traces, as the example of the Andean genus Polylepis shows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida, L., Cleef, A. M., Herrera, A., Velasques, A., & Luna, I. (1994). El zacatonal alpino del Volcán Popocatépetl, Mexico, y su posición en las montañas tropicales de América. Phytocoenologia, 22, 391–436.

    Google Scholar 

  • Beck, E. (1994). Cold tolerance in tropical alpine plants. In P. W. Rundel, A. P. Smith, & F. C. Meinzer (Eds.), Tropical alpine environments (pp. 77–110). Cambridge: Cambridge University Press.

    Google Scholar 

  • Behling, H. (1997). Late quaternary vegetation, climate and fire history of the Araucaria forest and Campos region from Serra Campos Gerais, Parana (South Brazil). Review of Palaeobotany and Palynology, 97, 109–121.

    Google Scholar 

  • Bernhardt, K.-G. (1991). Die Waldformationen in Costa Rica. Natur und Museum, 121, 289–301.

    Google Scholar 

  • Blaser, J. (1987). Standörtliche und waldkundliche Analyse eines Eichen-Wolkenwaldes (Quercus spp.) der Montanstufe in Costa Rica. Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen, 26, 1–235.

    Google Scholar 

  • Bosman, A. F., Van der Molen, P. C., Young, R., & Cleef, A. M. (1993). Ecology of a paramo cushionmire. Journal of Vegetation Science 4, 633–640.

    Google Scholar 

  • Bruijnzeel, L. A., Scatena, F. N., & Hamilton, L. S. (Eds.). (2010). Tropical montane cloud forests (740 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Burga, C. A., Klötzli, F., & Grabherr, G. (Eds.). (2004). Gebirge der Erde (504 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Cleef, A. M. (1981). The vegetation of the páramos of the Colombian Cordillera Oriental. Dissertationes Botanicae, 61, 1–231.

    Google Scholar 

  • Culmsee, H., Leuschner, C., Moser, G., & Pitopang, R. (2010). Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography, 37, 960–974.

    Google Scholar 

  • Ellenberg, H. (1958). Wald oder Steppe? Die natürliche Pflanzendecke der Anden Perus. Umschau, 1958, 645–681.

    Google Scholar 

  • Ellenberg, H. (1979). Man’s influence on tropical mountain ecosystems in South America. Journal of Ecology, 67, 401–416.

    Google Scholar 

  • Ellenberg, H. (1996). Paramos und Punas der Hochanden Südamerikas, heute großenteils als potentielle Wälder anerkannt. Verhandlungen Gesellschaft für Ökologie, 25, 17–23.

    Google Scholar 

  • García-Núñez, C., Rada, F., Boero, C., Gonzáles, J., Gallardo, M., Azókar, A., Liberman-Cruz, M., Hilal, M., & Prado, F. (2004). Leaf gas exchange and water relations in Polylepis tarapacana at extreme altitudes in the Bolivian Andes. Photosynthetica, 42, 133–138.

    Google Scholar 

  • Goldstein, G., Meinzer, F. C., & Rada, F. (1994). Environment biology of a tropical treeline species, Polylepis sericea. In P. W. Rundel, A. P. Smith, & F. C. Meinzer (Eds.), Tropical Alpine environments: Plant form and function (pp. 129–149). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gosling, W. D., Hanselman, J. A., Knox, C., Valencia, B. G., & Bush, M. B. (2009). Long-term drivers of change in Polylepis woodland distribution in the Central Andes. Journal of Vegetation Science, 20, 1041–1052.

    Google Scholar 

  • Gutte, P. (1985). Beitrag zur Kenntnis zentralperuanischer Pflanzengesellschaften IV. Die grasreiche Vegetation der alpinen Stufe. Wissenschaftliche Zeitschrift Karl-Marx-Universität Mathematisch-Naturwissenschaftliche Reihe, 34, 357–401.

    Google Scholar 

  • Gutte, P. (1988). Der anthropogene Einfluß in der Puna-Region Zentralperus. Flora, 180, 31–36.

    Google Scholar 

  • Havel, J.J. (1971). The Araucaria forests of New Guinea and their regenerative apacity. Journal of Ecology 59, 203–2014.

    Google Scholar 

  • Hedberg, O. (1964). Features of the afro-alpine plant ecology. Acta Phytogeographica Suecica, 49, 1–144.

    Google Scholar 

  • Hedberg, O. (1986). Origins of the afroalpine flora. In F. Vuilleumier & M. Monasterio (Eds.), High Altitude Tropical Biogeography (pp. 443–468). New York: Oxford University Press.

    Google Scholar 

  • Hensen, I. (1995). Die Vegetation von Polylepis-Wäldern der Ostkordillere Boliviens. Phytocoenologia, 25, 235–277.

    Google Scholar 

  • Hensen, I. (2002). Impacts of anthropogenic activity on the vegetation of Polylepis woodlands in the region of Cochabamba, Bolivia. Ecotropica, 8, 183–203.

    Google Scholar 

  • Hertel, D., & Wesche, K. (2008). Tropical moist Polylepis stands at the treeline in East Bolivia: The effect of elevation on stand microclimate, above- and below-ground structure, and regeneration. Trees, 22, 303–315.

    Google Scholar 

  • Hoch, G., & Körner, C. (2005). Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Functional Ecology, 19, 941–951.

    Google Scholar 

  • Hofstede, R. G. M., Mondragón Castillo, M. X., & Osorio, C. M. R. (1995). Biomass of grazed, burned, and undisturbed Páramo grasslands, Colombia. I. Above ground vegetation. Arctic and Alpine Research, 27, 1–12.

    Google Scholar 

  • Huber, O. (1976). Pflanzenökologische Untersuchungen im Gebirgsnebelwald von Rancho Grande (Venezolanische Küstenkordillere). Dissertation Leopold-Franzens-Universität, Innsbruck, 127 S.

    Google Scholar 

  • Huber, O. (2006). Herbaceous ecosystems on the Guayana Shield, a regional overview. Journal of Biogeography, 33, 464–475.

    Google Scholar 

  • Kapelle, M., & Horn, S. P. (Eds.). (2005). Páramos de Costa Rica (767 pp). Costa Rica: Instituto Nacional de Biodiversidad.

    Google Scholar 

  • Kessler, M. (1995). Polylepis-Wälder Boliviens: Taxa, Ökologie, Verbreitung und Geschichte. Dissertationes Botanicae 246, 303 S.

    Google Scholar 

  • Kessler, M. (2002). The “Polylepis problem”: Where do we stand? Ecotropica, 8, 97–110.

    Google Scholar 

  • Kessler, M. (2004). Bolivianische Anden. In C. A. Burga, F. Klötzli, & G. Grabher (Hrsg.), Gebirge der Erde (pp. 456–463). Stuttgart: E. Ulmer.

    Google Scholar 

  • Kitayama, K., & Aiba, S.-I. (2002). Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorous pools on Mount Kinabalu, Borneo. Journal of Ecology, 90, 37–51.

    Google Scholar 

  • Klink, H.-J. (1973). Die natürliche Vegetation und ihre räumliche Ordnung im Puebla-Tlaxcala-Gebiet (Mexiko). Erdkunde, 27, 213–225.

    Google Scholar 

  • Klink, H.-J., Lauer, W., & Ern, H. (1973). Erläuterungen zur Vegetationskarte 1:200.000 des Puebla-Tlaxcala-Gebiets. Erdkunde, 27, 225–229.

    Google Scholar 

  • Klötzli, F. (1958). Zur Pflanzensoziologie des Südhanges der alpinen Stufe des Kilimandscharo. Berichte des Geobotanischen Forschungsinstituts Rübel Zürich, 157, 33–59.

    Google Scholar 

  • Klötzli, F. (1975). Zur Waldfähigkeit der Gebirgs-Steppen Hoch-Semiens (Nord-Äthiopien). Berichte zur Naturkundlichen Forschung Südwestdeutschlands, 34, 131–147.

    Google Scholar 

  • Klötzli, F. (2004a). Popocatépetl (Mexiko) – Hausvulkan von Mexiko City. In C. A. Burga, F. Klötzli, & G. Grabherr (Hrsg.), Gebirge der Erde (pp. 450–455). Stuttgart: E. Ulmer.

    Google Scholar 

  • Klötzli, F. (2004b). Semien Gebirge (Hochland Äthiopiens) – Gegensätze von Basaltwänden und Grasplateaus. In C. A. Burga, F. Klötzli, & G. Grabherr (Hrsg.), Gebirge der Erde (pp. 391–400). Stuttgart: E. Ulmer.

    Google Scholar 

  • Klötzli, F. (2004c). Kilimanjaro – Berg der Pracht, Berg der Götter. In C. A. Burga, F. Klötzli, & G. Grabherr (Eds.), Gebirge der Erde (pp. 380–390). Stuttgart: E. Ulmer.

    Google Scholar 

  • Knapp, R. (1974). Cyclic successions and ecosystem approaches in vegetation dynamics. In R. Knapp (Ed.), Handbook of vegetation science. Vol. 8 Vegetation dynamics (pp. 91–100). The Hague: Dr. W. Junk Publishers.

    Google Scholar 

  • Köhler, L., Tobón, C., Frumau, K. F. A., & Bruijnzeel, L. A. (2007). Biomass and water storage of epiphytes in old-growth and secondary montane rain forest stands in Costa Rica. Plant Ecology, 193, 171–184.

    Google Scholar 

  • Körner, C. (2003). Alpine plant life. Functional plant ecology of high mountain ecosystems (2nd ed., 344 pp). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology (4th ed., 513 pp). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Lauer, W. (1973). Zusammenhänge zwischen Klima und Vegetation am Ostabfall der mexikanischen Meseta. Erdkunde, 27, 192–213.

    Google Scholar 

  • Lauer, W. (1988). Zum Wandel der Vegetationszonierung in den Lateinamerikanischen Tropen seit dem Höhepunkt der letzten Eiszeit. In H. J. Buchholz & G. Gerold (Eds.), Jahrbuch der Geographischen Gesellschaft zu Hannover, Lateinamerikaforschung (pp. 1–45). Hannover: Geographischen Gesellschaft.

    Google Scholar 

  • League, B. L., & Horn, S. P. (2000). A 10000 year record of Páramo fires in Costa Rica. Journal of Tropical Ecology, 16, 747–752.

    Google Scholar 

  • Lieberei, R., & Reisdorff, C. (2007). Nutzpflanzenkunde (7th ed., 476 pp). Stuttgart/New York: Georg Thieme.

    Google Scholar 

  • Lieberman, D., Lieberman, R., Peralta, R., & Hartshorn, G. S. (1996). Tropical forest structures and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology, 84, 137–152.

    Google Scholar 

  • Mabberley, D. J. (2017). Mabberley’s plant-book (4th ed., 1102 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Mangen, J. M. (1993). Ecology and vegetation of Mt. Tricora, New Guinea (Irian Jaya/Indonesia) (216 pp). Travaux Scientifiques du Musee National d’Histoire Naturelle de Luxembourg.

    Google Scholar 

  • Miehe, S. (1988). Vegetation ecology of the Jebel Marra Massif in the semiarid Sudan. Dissertationes Botanicae, 113, 171 pp.

    Google Scholar 

  • Miehe, G., & Miehe, S. (1994). Zur oberen Waldgrenze in tropischen Gebirgen. Phytocoenologia, 24, 53–110.

    Google Scholar 

  • Monasterio, M. (1986). Adaptive strategies of Espeletia in the Andean desert páramo. In F. Vuilleumier & M. Monasterio (Eds.), High altitude tropical biogeography (pp. 49–80). New York: Oxford University Press.

    Google Scholar 

  • Mueller-Dombois, D., & Fosberg, F. L. (1998). Vegetation of the tropical Pacific islands (733 pp). New York: Springer.

    Google Scholar 

  • Nagy, L., & Grabherr, G. (2009). The biology of alpine habitats (376 pp). Oxford/New York: Oxford University Press.

    Google Scholar 

  • Podwojewski, P., Poulenard, J., Zambrana, T., & Hofstede, R. (2002). Overgrazing effects on vegetation cover and properties of volcanic ash soil in the páramo of Llangahua and La Esperanza (Tungurahua, Ecuador). Soil Use and Management, 18, 45–55.

    Google Scholar 

  • Rada, F., Goldstein, G., Azocar, A., & Meinzer, F. (1985). Freezing avoidance in Andean rosette plants. Plant, Cell and Environment, 8, 501–507.

    Google Scholar 

  • Rada, F., García-Núñez, C., Boero, C., Gallardo, M., Hilal, M., González, J., Prado, F., Liberman-Cruz, M., & Azócar, A. (2001). Low-temperature resistance in Polylepis tarapacana, a tree growing at the highest altitudes in the world. Plant, Cell and Environment, 24, 377–381.

    Google Scholar 

  • Ralph, C. P. (1978). Observations on Azorella compacta (Umbelliferae), a tropical Andean cushion plant. Biotropica, 10, 62–67.

    Google Scholar 

  • Rauh, W. (1988). Tropische Hochgebirgspflanzen (206 pp). Springer/Berlin/Heidelberg: Wuchs- und Lebensformen.

    Google Scholar 

  • Rehder, H. (1976). Nutrient turnover studies in alpine ecosystems. Oecologia, 22, 411–423.

    CAS  PubMed  Google Scholar 

  • Richards, P. W. (1996). The tropical rain forest (2nd ed., 575 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ruthsatz, B. (1977). Pflanzengesellschaften und ihre Lebensbedingungen in den Andinen Halbwüsten Nordwest-Argentiniens. Dissertationes Botanicae, 39, 168 pp.

    Google Scholar 

  • Ruthsatz, B. (1983). Der Einfluss des Menschen auf die Vegetation semiarider bis arider tropischer Hochgebirge am Beispiel der Hochanden. Berichte der Deutschen Botanischen Gesellschaft, 96, 535–576.

    Google Scholar 

  • Ruthsatz, B. (1995). Vegetation und Ökologie tropischer Hochgebirgsmoore in den Anden Nord-Chiles. Phytocoenologia, 25, 185–234.

    Google Scholar 

  • Ruthsatz, B. (2012). Vegetation ecology of high Anderan peatlands of Bolivia. Phytocoenologia, 42, 133–179.

    Google Scholar 

  • Safford, H. D. (1999). Brazilian Paramos I. An introduction to the physical environment and vegetation of the campos de altitude. Journal of Biogeography, 26, 693–712.

    Google Scholar 

  • Sarmiento, L., & Ataroff, M. (2004). Nordanden (Venezuela). In C. A. Burga, F. Klötzli, & G. Grabherr (Hrsg.), Gebirge der Erde. Landschaft, Klima, Pflanzenwelt (pp. 425–435). Stuttgart: E. Ulmer.

    Google Scholar 

  • Scatena, F. N., Bruijnzeel, L. A., Bubb, P., & Das, S. (2010). Setting the stage. In L. A. Bruijnzeel, F. N. Scatena, & L. S. Hamilton (Eds.), Tropical montane cloud forests (pp. 3–13). Cambridge: Cambridge University Press.

    Google Scholar 

  • Scholz, U. (2003). Die feuchten Tropen. 1. korrigierter Nachdruck (173 pp). Braunschweig: Westermann Schulbuchverlag.

    Google Scholar 

  • Schroeder, F.-G. (1998). Lehrbuch der Pflanzengeographie (457 pp). Wiesbaden: Quelle & Meyer.

    Google Scholar 

  • Seibert, P. (1996). Farbatlas Südamerika. Landschaften und Vegetation (288 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Seibert, P., & Menhofer, X. (1991). Die Vegetation des Wohngebiets der Kallawaya und des Hochlands von Ulla-Ulla in den bolivianischen Anden. Teil I. Phytocoenologia, 20, 145–276.

    Google Scholar 

  • Seibert, P., & Menhofer, X. (1992). Die Vegetation des Wohngebiets der Kallawaya und des Hochlands von Ulla-Ulla in den bolivianischen Anden. Teil II. Phytocoenologia, 20, 289–438.

    Google Scholar 

  • Smith, C. T ., Bushnell, B. H. S., Dobyns, H. F., McCorkle, T., & Murra, J. V. (1970). Depopulation of the Central Andes in the 16th Century [and Comments and Reply]. Current Anthropology, 11, 453–464.

    Google Scholar 

  • Squeo, A., Rada, F., Azocar, A., & Goldstein, G. (1991). Freezing tolerance and avoidance in high tropical Andean plants: Is it equally represented in species with different plant height? Oecologia, 86, 378–382.

    CAS  PubMed  Google Scholar 

  • Tosi, J. A., Jr. (1969). Mapa ecológica. República de Costa Rica. Segun la classificación de zonas de vida del mundo del Holdridge. San José: Centro Scientífico Tropical.

    Google Scholar 

  • Troll, C. (1959). Die tropischen Gebirge. Bonner Geographische Abhandlungen, 25, 93 pp.

    Google Scholar 

  • Troll, C. (1968). The cordilleras of the tropical Americas. Aspects of climatic, phytogeographical and agrarian ecology. Colloquium Geographicum, 9, 15–56.

    Google Scholar 

  • Vareschi, V. (1980). Vegetationsökologie der Tropen (293 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Walter, H., & Breckle, S.-W. (2004). Ökologie der Erde, Band 2. Spezielle Ökologie der Tropischen und Subtropischen Zonen (3rd ed., 764 pp). Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Walter, H., & Medina, E. (1969). La temperatura del suelo como factor determinante para la caracterización de los pisos subalpinos y alpinos en los Andes de Venezuela. Boletin de la Sociedad Venezolana de Ciencias Naturales, 28, 201–210.

    Google Scholar 

  • Weber, H. (1958). Die Páramos von Costa Rica und ihre pflanzengeographische Verkettung mit den Hochanden Südamerikas. Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse derAkademie der Wissenschaften und der Literatur, 194 pp.

    Google Scholar 

  • Wesche, K., Miehe, G., & Kaeppeli, M. (2000). The significance of fire for afroalpine Ericaceous vegetation. Mountain Research and Development, 20, 340–347.

    Google Scholar 

  • Wesche, K., Cierjacks, A., Assefa, Y., Wagner, S., Fetene, M., & Hensen, I. (2008). Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecology & Diversity, 1, 35–46.

    Google Scholar 

  • Whitfield, P. (Ed.). (1984). Macmillan illustrated animal encyclopedia. New York: Macmillan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Vegetation of the Tropical High Mountains. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_5

Download citation

Publish with us

Policies and ethics