Skip to main content

Alpine treelines

  • Chapter
  • First Online:
Alpine Plant Life

Abstract

The distribution of trees reaches a natural limit somewhere along thermal, drought, or disturbance gradients. The limit set by low temperature at high elevation or high polar latitudes is termed ‘treeline’ (alpine or arctic treeline). Treelines represent an abrupt change in land cover by a dominant life form, a change from tall woody to small, mostly herbaceous or graminoid forms, and the treeline is defined irrespective of the species of trees that reach it. Beyond the treeline, tall, single-stemmed, woody plants with crowns protruding into the free atmosphere either can not establish or be sustained (Fig. 7.1). Why do trees disappear above a certain elevation? What causes the alpine life zone to be treeless? The answer to this question would also indicate which functional attributes alpine plants must have to thrive where trees are unable to exist. Thus, there is a reciprocal interest in this question, upslope for forest ecology, and downslope (because of its lower boundary) for alpine ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Uria P, Körner C (2007) Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol 21:211–218

    Article  Google Scholar 

  • Armand AD (1992) Sharp and gradual mountain timberlines as a result of species interaction. In: Hansen AJ, di Castri F (eds) Landscape boundaries. Consequences for biotic diversity and ecological flows. Ecol Stud (Springer) 92:360–378

    Google Scholar 

  • Arno SF (1984) Timberline. The Mountaineers, Seattle

    Google Scholar 

  • Aulitzky H (1961) Lufttemperatur und Luftfeuchtigkeit. Mitt Forstl Bundes Versuchsanst Mariabrunn (Wien) 59:105–125

    Google Scholar 

  • Baig MN, Tranquillini W (1980) The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in desiccation damage at the alpine treeline. Oecologia 47:252–256

    Article  CAS  PubMed  Google Scholar 

  • Ballard TM (1972) Subalpine soil temperature regimes in southwestern British Columbia. Arct Alp Res 4:139–146

    Article  Google Scholar 

  • Barclay AM, Crawford RMM (1982) Winter desiccation stress and resting bud viability in relation to high altitude survival. Flora 172:21–34

    Article  Google Scholar 

  • Barry RG (1981) Mountain weather and climate. Methuen, London

    Google Scholar 

  • Beaman JH (1962) The timberlines of Itzaccihuatl and Popocatepetl, Mexico. Ecology 43:377–385

    Google Scholar 

  • Beck E, Scheibe R, Schulze ED (1986) Recovery from fire: observations in the alpine vegetation of western Mt. Kilimanjaro (Tanzania). Phytocoenologia 14:55–77

    Article  Google Scholar 

  • Benecke U, Havranek WM (1980) Gas-exchange of trees at altitudes up to timberline, Craigieburn Range, New Zealand. N Z Forest Serv Tech Pap 70:195–212

    Google Scholar 

  • Benecke U, Schulze ED, Matyssek R, Havranek WM (1981) Environmental control of CO2-assimilation and leaf conductance in Larix decidua Mill. I. A comparison of contrasting natural environments. Oecologia 50:54–61

    Article  CAS  PubMed  Google Scholar 

  • Bernoulli M, Körner Ch (1999) Dry matter allocation in treeline trees. Phyton 39:7–12

    Google Scholar 

  • Bilan MV (1967) Effect of low temperature on root elongation in loblolly pine seedlings. Proc 14 IUFRO-Congress, München. Intern Union Forest Res Org 4/23:74–82

    Google Scholar 

  • Birmann K, Körner C (2009) Nitrogen status of conifer needles at the alpine treeline. Plant Ecol Divers 2:233–241

    Article  Google Scholar 

  • Brockmann-Jerosch H (1919) Baumgrenze und Klimacharakter. Pflanzengeogr Kom Schweiz Naturf Ges, Beitr Geobot Landesaufn, 6. Rascher, Zürich

    Google Scholar 

  • Caprez R, Niklaus PA, Körner C (2012) Forest soil respiration reflects plant productivity across a temperature gradient in the Alps. Oecologia 170:1143–1154

    Article  PubMed  Google Scholar 

  • Cuevas JG (2000) Tree recruitment at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. J Ecol 88:840–855

    Article  Google Scholar 

  • Dahl E (1986) Zonation in arctic and alpine tundra and fellfield ecobiomes. In: Polunin N (ed) Ecosystem theory application. Wiley, London, pp 35–62

    Google Scholar 

  • Däniker A (1923) Biologische Studien über Baum- und Waldgrenze, insbesondere über die klimatischen Ursachen und deren Zusammenhänge. Vierteljahresschr Naturforsch Ges Zürich 68:1–102

    Google Scholar 

  • Daubenmire RF (1954) Alpine timberlines in the Americas and their interpretation. Butler Univ Bot Stud 2:119–136

    Google Scholar 

  • Dawes MA, Philipson CD, Fonti P, Bebi P, Hattenschwiler S, Hagedorn F, Rixen C (2015) Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. Glob Change Biol 21:2005–2021

    Article  Google Scholar 

  • Day TA, DeLucia EH, Smith WK (1989) Influence of cold soil and snow cover on photosynthesis and leaf conductance in two Rocky Mountain conifers. Oecologia 80:546–552

    Article  CAS  PubMed  Google Scholar 

  • De Quervain A (1904) Die Hebung der atmosphärischen Isothermen in den Schweizer Alpen und ihre Beziehung zu den Höhengrenzen. In: Gerlaned G (ed) Beitr Geoph. Z Physikal Erdk, Wilhelm Engelmann, Leipzig, pp 481–533

    Google Scholar 

  • Deshmukh I (1986) Ecology and tropical biology. Blackwell, Oxford

    Google Scholar 

  • Eijgenraam F, Anderson A (1991) A window on life in the Bronze Age. Science 254:187–188

    CAS  PubMed  Google Scholar 

  • Elias SA (2001) Paleoecology and late Quarternary environments of the Colorado Rockies. In: Bowman WD, Seastedt TR (eds) Structure and function of an alpine ecosystem—Niwot Ridge, Colorado. Oxford University Press, Oxford, pp 285–303

    Google Scholar 

  • Ellenberg H (1963) Vegetation Mitteleuropas mit den Alpen in kausaler, dynamischer und historischer Sicht. Ulmer, Stuttgart

    Google Scholar 

  • Ellenberg H (1996) Páramos und Punas der Hochanden Südamerikas, heute grossenteils als potentielle Wälder anerkannt. Verh Ges Ökol 25:17–23

    Google Scholar 

  • Fajardo A, McIntire EJB (2012) Reversal of multicentury tree growth improvements and loss of synchrony at mountain tree lines point to changes in key drivers. J Ecol 100:782–794

    Google Scholar 

  • Fajardo A, Piper FI, Hoch G (2013) Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Ann Bot 112:623–631

    Google Scholar 

  • Flenley JR (1979) The equatorial rain forest: a geological history. Butterworth, London

    Google Scholar 

  • Germino MJ, Smith WK (2000) Differences in microsite, plant form, and low-temperature photoinhibition in alpine plants. Arct Antarct Alp Res 32:388–396

    Article  Google Scholar 

  • Goldstein G, Meinzer FC, Rada F (1994) Environmental biology of a tropical treeline species, Polylepis sericea. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 129–149

    Chapter  Google Scholar 

  • Grace J (1977) Plant response to wind. Academic Press, London

    Google Scholar 

  • Grace J (1988) The functional significance of short stature in montane vegetation. In: Werger MJA, Van der Aart PJM, During HJ, Verhoeven JTA (eds) Plant form and vegetation structure. SPB Academic Publishers, The Hague, pp 201–209

    Google Scholar 

  • Grace J (1989) Tree lines. Philos Trans R Soc Lond (Biol) 324:233–245

    Google Scholar 

  • Grace J (1990) Cuticular water loss unlikely to explain treeline in Scotland. Oecologia 84:64–68

    Article  PubMed  Google Scholar 

  • Grace J, Norton DA (1990) Climate and growth of Pinus sylvestris at its upper altitudinal limit in Scotland: evidence from tree growth-rings. J Ecol 78:601–610

    Article  Google Scholar 

  • Graumlich LJ, Brubaker LB (1995) Long-term records of growth and distribution of conifers: integration of paleoecology. In: Smith WK, Hinckley TM (eds) Ecophysiology of coniferous forests. Academic Press, San Diego, pp 37–62

    Chapter  Google Scholar 

  • Greer DH (1978) Comparative ecophysiology of some snow tussock (Chionochloa spp) populations in Otago. PhD Thesis, Dunedin, New Zealand

    Google Scholar 

  • Gross M (1989) Untersuchungen an Fichten der alpinen Waldgrenze. Diss Bot 139

    Google Scholar 

  • Hadley JL, Smith WK (1983) Influence of wind exposure on needle desiccation and mortality for timberline conifers in Wyoming, USA. Arct Alp Res 15:127–135

    Article  Google Scholar 

  • Hadley JL, Smith WK (1990) Influence of leaf surface wax and leaf area to water content ratio on cuticular transpiration in western conifers, USA. Can J For Res 20:1306–1311

    Article  Google Scholar 

  • Halloy SRP, Mark AF (1996) Comparative leaf morphology spectra of plant communities in New Zealand, the Andes and the European Alps. J R Soc N Z 26:41–78

    Article  Google Scholar 

  • Häsler R (1982) Net photosynthesis and transpiration of Pinus montana on east and north facing slopes at alpine timberline. Oecologia 54:14–22

    Article  PubMed  Google Scholar 

  • Häsler R, Streule A, Turner H (1999) Shoot and root growth of young Larix decidua in contrasting microenvironments near the alpine timberline. Phyton 39:47–52

    Google Scholar 

  • Hättenschwiler S, Smith WK (1999) Seedling occurrence in alpine treeline conifers: a case study from the central Rocky Mountains, USA. Acta Oecol 20:219–224

    Article  Google Scholar 

  • Hättenschwiler S, Handa T, Egli L, Asshoff R, Ammann W, Körner C (2002) Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol 156:363–375

    Article  PubMed  Google Scholar 

  • Havranek W (1972) Über die Bedeutung der Bodentemperatur für die Photosynthese und Transpiration junger Forstpflanzen und für die Stoffproduktion an der Waldgrenze. Angew Bot 46:101–116

    Google Scholar 

  • Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeogr Suec 139

    Google Scholar 

  • Hemp A (2005) Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Glob Change Biol 11:1013–1023

    Article  Google Scholar 

  • Hermes K (1955) Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze. Kölner geographische Arbeiten, Heft 5. Geographisches Institut, University of Köln

    Google Scholar 

  • Hoch G (2013) Reciprocal root-shoot cooling and soil fertilization effects on the seasonal growth of two treeline conifer species. Plant Ecol Diversity 6:21–30

    Google Scholar 

  • Hoch G, Körner Ch (2003) The carbon charging of pines at the climatic treeline: a global comparison. Oecologia 135:10–21

    Article  PubMed  Google Scholar 

  • Hoch G, Körner C (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol 19:941–951

    Article  Google Scholar 

  • Hoch G, Körner C (2009) Growth and carbon relations of tree forming conifers at constant vs. variable low temperatures. J Ecol 97:57–66

    Article  Google Scholar 

  • Hoch G, Körner C (2012) Global patterns of mobile carbon stores in trees at the high-elevation tree line. Glob Ecol Biogeogr 21:861–871

    Article  Google Scholar 

  • Hoch G, Popp M, Körner Ch (2002) Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos 98:361–374

    Article  CAS  Google Scholar 

  • Holtmeier FK (1974) Geoökologische Beobachtungen und Studien an der subarktischen und alpinen Waldgrenze in vergleichender Sicht. Steiner, Wiesbaden

    Google Scholar 

  • Holtmeier FK (1994) Ecological aspects of climatically-caused timberline fluctuations. Review and outlook. In: Beniston M (ed) Mountain environments in changing climates. Routledge, London, pp 220–233

    Chapter  Google Scholar 

  • Holtmeier F-K (2003) Mountain timberlines. Ecology, patchiness, and dynamics. Advances in global change research 14. Kluwer Acad Publ, Dordrecht

    Google Scholar 

  • Holtmeier FK, Broll G (1992) The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra ecotone on Niwot Ridge, Colorado Front Range, U.S.A. Arct Alp Res 24:216–228

    Article  Google Scholar 

  • Ives JD (1978) Remarks on the stability of timberline. In: Troll C, Lauer W (eds) Geoecological relations between the southern temperate zone and the tropical mountains. Steiner, Wiesbaden, pp 313–317

    Google Scholar 

  • James JC, Grace J, Hoad SP (1994) Growth and photosynthesis of Pinus sylvestris at its altitudinal limit in Scotland. J Ecol 82:297–306

    Article  Google Scholar 

  • Junttila O (1986) Effects of temperature on shoot growth in northern provenances of Pinus sylvestris L. Tree Physiol 1:185–192

    Article  CAS  PubMed  Google Scholar 

  • Karger DN, Kessler M, Conrad O, Weigelt P, Kreft H, König C, Zimmermann NE (2019) Why tree lines are lower on islands—climatic and biogeographic effects hold the answer. Glob Ecol Biogeogr. https://doi.org/10.1111/geb.12897

    Article  Google Scholar 

  • Karlsson PS, Nordell KO (1996) Effects of soil temperature on the nitrogen economy and growth of mountain birch seedlings near its presumed low temperature distribution limit. Ecoscience 3:183–189

    Article  Google Scholar 

  • Kerner A (1869) Die Abhängigkeit der Pflanzengestalt von Klima und Boden. Festschrift der 43. Jahresversammlung Deutscher Naturforscher und Ärzte, Wagner, Innsbruck, pp 29–45

    Google Scholar 

  • Kessler M, Hohnwald S (1998) Bodentemperaturen innerhalb und ausserhalb bewaldeter und unbewaldeter Blockhalden in den bolivianischen Hochanden. Erdkunde 52:54–62

    Article  Google Scholar 

  • Klötzli FA (1991) Niches of longevity and stress. In: Esser G, Overdieck D (eds) Modern ecology: basic and applied aspects. Elsevier, Amsterdam, pp 97–110

    Chapter  Google Scholar 

  • Körner C (1989) The nutritional status of plants from high altitudes. A worldwide comparison. Oecologia 81:379–391

    Article  PubMed  Google Scholar 

  • Körner C (1991) Some often overlooked plant characteristics as determinants of plant growth: a reconsideration. Funct Ecol 5:162–173

    Article  Google Scholar 

  • Körner C (1994) Biomass fractionation in plants: a reconsideration of definitions based on plant functions. In: Roy J, Garnier E (eds) A whole plant perspective on carbon-nitrogen interactions. SPB Academic Publishers, The Hague, pp 173–185

    Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  PubMed  Google Scholar 

  • Körner C (2007) Climatic treelines: Conventions, global patterns, causes. Erdkunde 61:315–324

    Google Scholar 

  • Körner C (2012a) Alpine treelines. Springer, Basel

    Book  Google Scholar 

  • Körner C (2012b) Treelines will be understood once the functional difference between a tree and a shrub is. Ambio 41:197–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Körner C (2015) Paradigm shift in plant growth control. Curr Opin Plant Biol 25:107–114

    Article  PubMed  CAS  Google Scholar 

  • Körner C (2020) Climatic controls of the global high elevation treelines. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes (Elsevier) 1:275–281. https://doi.org/10.1016/B978-0-12-409548-9.11998-0

  • Körner C, Cochrane P (1983) Influence of plant physiognomy on leaf temperature on clear midsummer days in the Snowy Mountains, south-eastern Australia. Acta Oecol Oec Plant 4:117–124

    Google Scholar 

  • Körner C, Hiltbrunner E (2018) The 90 ways to describe plant temperature. Perspect Plant Ecol Evol Syst 30:16–21

    Article  Google Scholar 

  • Körner C, Hoch G (2006) A test of treeline theory on a montane permafrost island. Arct Antarct Alp Res 38:113–119

    Article  Google Scholar 

  • Körner C, Allison A, Hilscher H (1983) Altitudinal variation in leaf diffusive conductance and leaf anatomy in heliophytes of montane New Guinea and their interrelation with microclimate. Flora 174:91–135

    Article  Google Scholar 

  • Körner C, Bannister P, Mark AF (1986) Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69:577–588

    Article  PubMed  Google Scholar 

  • Körner C, Pelaez-Riedl S, van Bel AJE (1995) CO2 responsiveness of plants: a possible link to phloem loading. Plant Cell Environ 18:595–600

    Article  Google Scholar 

  • Körner C, Paulsen J, Pelaez-Riedl S (2003) A bioclimatic characterisation of Europe’s alpine areas. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe. Ecological Studies, vol 167. Springer, Berlin, pp 13–28

    Google Scholar 

  • Körner C, Basler D, Hoch G, Kollas C, Lenz A, Randin CF, Vitasse Y, Zimmermann NE (2016) Where, why and how? Explaining the low-temperature range limits of temperate tree species. J Ecol 104:1076–1088

    Article  CAS  Google Scholar 

  • LaMarche VC, Mooney HA (1972) Recent climatic change and development of bristlecone pine (P. longaeva Bailey) krummholz zone, Mt. Washington, Nevada. Arct Alp Res 4:61–72

    Article  Google Scholar 

  • Larcher W (1963) Zur spätwinterlichen Erschwerung der Wasserbilanz von Holzpflanzen an der Waldgrenze. Ber Naturwiss-Med Verein Innsbruck 53:125–137

    Google Scholar 

  • Larcher W (1975) Pflanzenökologische Beobachtungen in der Paramostufe der venezolanischen Anden. Anz Math Naturwiss Kl Österr Akad Wiss (Wien) 11:194–213

    Google Scholar 

  • Larcher W (1985) Winter stress in high mountains. Ber Eidgenöss Anst Forstl Versuchswes 270:11–20

    Google Scholar 

  • Lauer W (1988) Zum Wandel der Vegetationszonierung in den Lateinamerikanischen Tropen seit dem Höhepunkt der letzten Eiszeit. In: Buchholz HJ, Gerold G (eds) Jahrbuch der Geographischen Gesellschaft zu Hannover, Lateinamerikaforschung, Hannover. Selbstverlag der Geographischen Gesellschaft, Hannover, pp 1–45

    Google Scholar 

  • Lenz A, Hoch G, Vitasse Y, Körner C (2013) European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients. New Phytol 200:1166–1175

    Article  PubMed  Google Scholar 

  • Leuschner C (1996) Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: elevation, structure and floristics. Vegetatio 123:193–206

    Article  Google Scholar 

  • Li MH, Hoch G, Körner C (2002) Source/sink removal affects moblie carbohydrates in Pinus cembra at the Swiss treeline. Trees 16:331–337

    Article  CAS  Google Scholar 

  • Loris K (1981) Dickenwachstum von Zirbe, Fichte und Lärche an der alpinen Waldgrenze/Patscherkofel. Ergebnisse der Dendrometermessungen 1976–79. Mitt Forstl Bundes Versuchsanst Wien 142:416–441

    Google Scholar 

  • Lotter AF, Heiri O, Hofmann W, van der Knaap WO, van Leeuwen JFN, Walker IR, Wick L (2006) Holocene timber-line dynamics at Bachalpsee, a lake at 2265 m a.s.l. in the northern Swiss Alps. Veg Hist Archaeobot 15:295–307

    Google Scholar 

  • Löve D (1970) Subarctic and subalpine: where and what? Arct Alp Res 2:63–73

    Article  Google Scholar 

  • Malyshev L (1993) Levels of the upper forest boundary in nothern Asia. Vegetatio 109:175–186

    Article  Google Scholar 

  • Marchand PJ (1991) Life in the cold, 2nd edn. University Press of New England, Hannover

    Google Scholar 

  • Marchand PJ, Chabot BF (1978) Winter water relations of treeline plant species on Mt. Washington, New Hampshire. Arct Alp Res 10:105–116

    Article  Google Scholar 

  • Markgraf V (1969) Moorkundliche und vegetationsgeschichtliche Untersuchungen an einem Moorsee an der Waldgrenze im Wallis. Bot Jahrb 89:1–63

    Google Scholar 

  • Mayr S, Hacke U, Schmid P, Schwienbacher F, Gruber A (2006) Frost drought in conifers at the alpine timberline: Xylem dysfunction and adaptations. Ecology 87:3175–3185

    Article  PubMed  Google Scholar 

  • McCracken IJ, Wardle P, Benecke U, Buxton RP (1985) Winter water relations of tree foliage at timberline in New Zealand and Switzerland. Ber Eidgenöss Anst Forstl Versuchswes 270:85–93

    Google Scholar 

  • Michaelis P (1934) Ökologische Studien an der alpinen Baumgrenze. IV. Zur Kenntnis des winterlichen Wasser-haushaltes. Jahrb Wiss Bot 80:169

    Google Scholar 

  • Miehe G (1989) Vegetation patterns on Mount Everest as influenced by monsoon and föhn. Vegetatio 79:21–32

    Article  Google Scholar 

  • Miehe G, Miehe S (1994) Zur oberen Waldgrenze in tropischen Gebirgen. Phytocoenologia 24:53–110

    Article  Google Scholar 

  • Miehe G, Miehe S, Vogel J, Co S, Duo L (2007) Highest treeline in the northern hemisphere found in southern Tibet. Mt Res Dev 27:169–173

    Article  Google Scholar 

  • Mikola P (1962) Temperature and tree growth near the northern timber line. In: Kozlowski TT (ed) Tree growth. Ronald Press Comp., New York, pp 265–274

    Google Scholar 

  • Millar CI, Westfall RD, Delany DL, Flint AL, Flint LE (2015) Recruitment patterns and growth of high-elevation pines in response to climatic variability (1883–2013), in the western Great Basin, USA. Can J For Res 45:1299–1312

    Google Scholar 

  • Möhl P, Mörsdorf MA, Dawes MA, Hagedorn F, Bebi P, Viglietti D, Freppaz M, Wipf S, Körner C, Thomas FM, Rixen C (2019) Twelve years of low nutrient input stimulates growth of trees and dwarf shrubs in the treeline ecotone. J Ecology 107:768–780

    Google Scholar 

  • Monasterio M (1986) Adaptive strategies of Espeletia in the Andean desert páramo. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 49–80

    Google Scholar 

  • Mooney HA, Wright RD, Strain BR (1964) The gas exchange capacity of plants in relation to vegetation zonation in the White Mountains of California. Am Midl Nat 72:281–297

    Article  CAS  Google Scholar 

  • Morales MS, Villalba R, Grau HR, Paolini L (2004) Rainfall-controlled tree growth in high-elevation subtropical treelines. Ecology 85:3080–3089

    Article  Google Scholar 

  • Moscol-Olivera MCM, Cleef AM (2009) Vegetation composition and altitudinal distribution of Andean rain forests in El Angel and Guandera reserves, northern Ecuador. Phytocoenologia 39:175–204

    Article  Google Scholar 

  • Munn LC, Buchnan BA, Nielsen GA (1978) Soil temperatures in adjacent high elevation forests and meadows of Montana. Soil Sci Am J 42:982–983

    Article  Google Scholar 

  • Neuwinger I (1970) Böden der subalpinen und alpinen Stufe in den Tiroler Alpen. Mitt Ostalpin-Dinarische Ges Vegetationskd (Innsbruck) 11:135–150

    Google Scholar 

  • Nicolussi K, Bortenschlager S, Körner Ch (1995) Increase in tree-ring width in subalpine Pinus cembra from the central Alps that may be CO2-related. Trees 9:181–189

    Article  Google Scholar 

  • Noble IR (1993) A model of the response of ecotones to climate change. Ecol Appl 3:396–403

    Article  PubMed  Google Scholar 

  • Noroozi J, Körner C (2018) A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran. Alp Bot 128:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberhuber W, Thomaser G, Mayr S, Bauer H (1999) Radial growth of Norway spruce infected by Chrysomyxa rhododendri. Phyton 39:147–154

    Google Scholar 

  • Ohsawa M (1990) An interpretation of latitudinal patterns of forest limits in South- and East-Asian mountains. J Ecol 78:326–339

    Article  Google Scholar 

  • Oswald H (1963) Verteilung und Zuwachs der Zirbe (Pinus cembra L.) der subalpinen Stufe an einem zentralalpinen Standort. Mitt Forstl Versuchswes Österr 60:437–499

    Google Scholar 

  • Paulsen J, Körner Ch (2001) GIS analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J Veg Sci 12:817–824

    Article  Google Scholar 

  • Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alp Bot 124:1–12

    Article  Google Scholar 

  • Paulsen J, Weber UM, Körner C (2000) Tree growth near treeline: abrupt or gradual reduction with altitude? Arctic Antarct Alp Res 32:14–20

    Article  Google Scholar 

  • Perkins TD, Adams GT (1995) Rapid freezing induces winter injury symptomatology in red spruce foliage. Tree Physiol 15:259–266

    Article  CAS  PubMed  Google Scholar 

  • Pisek A, Winkler E (1959) Licht- und Temperaturabhängigkeit der CO2-Assimilation von Fichte (Picea excelsa Link), Zirbe (Pinus cembra L.) und Sonnenblume (Helianthus annuus L.). Planta 53:532–550

    Article  CAS  Google Scholar 

  • Rada F, Azocar A, Briceno B, Gonzalez J, Garcia-Nunez C (1996) Carbon and water balance in Polylepis sericea, a tropical treeline species. Trees 10:218–222

    Google Scholar 

  • Rehm EM, Feeley KJ (2015) Freezing temperatures as a limit to forest recruitment above tropical Andean treelines. Ecology 96:1856–1865

    Article  PubMed  Google Scholar 

  • Richards JH (1985) Ecophysiological characteristics of seedling and sapling subalpine larch, Larix lyallii, in the winter environment. Ber Eidgenöss Anst Forstl Versuchswes 270:103–112

    Google Scholar 

  • Roberts J, Wareing PF (1975) A study of the growth of four provenances of Pinus contorta Dougl. Ann Bot 39:93–99

    Article  Google Scholar 

  • Rochefort RM, Little RL, Woodward A, Peterson DL (1994) Changes in sub-alpine tree distribution in western North-America: a review of climatic and other causal factors. Holocene 4:89–100

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12

    Article  PubMed  Google Scholar 

  • Rundel PW (1994) Tropical alpine climates. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 21–44

    Chapter  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress, Ecol Stud (Springer) 62

    Book  Google Scholar 

  • Schenker G, Lenz A, Körner C, Hoch G (2014) Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol 34:302–313

    Article  PubMed  Google Scholar 

  • Schönenberger W, Frey W (1988) Untersuchungen zur Ökologie und Technik der Hochlagenaufforstung. Forschungsergebnisse aus dem Lawinenanrissgebiet Stillberg. Schweiz Z Forstwes 139:735–820

    Google Scholar 

  • Schröter C (1908/1926) Das Pflanzenleben der Alpen. Eine Schilderung der Hochgebirgsflora. Raustein, Zürich

    Google Scholar 

  • Schulze ED, Mooney HA, Dunn EL (1967) Wintertime photosynthesis of bristlecone pine (Pinus aristata) in the White Mountains of California. Ecology 48:1044–1047

    Article  Google Scholar 

  • Schweingruber FH, Bartholin T, Schaer E, Briffa KR (1988) Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17:559–566

    Article  Google Scholar 

  • Scott PA, Bentley CV, Fayle DCF, Hansell RIC (1987) Crown forms and shoot elongation of white spruce at the treeline, Churchill, Manitoba, Canada. Arct Alp Res 19:175–186

    Article  Google Scholar 

  • Shanks REC (1956) Altitudinal and microclimatic relationships of soil temperature under natural vegetation. Ecology 37:1–7

    Article  Google Scholar 

  • Slatyer RO (1976) Water deficits in timberline trees in the Snowy Mountains of south-eastern Australia. Oecologia 24:357–366

    Article  CAS  PubMed  Google Scholar 

  • Slatyer RO (1978) Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Spreng. VII. Relationship between gradients of field temperature and photosynthetic temperature optima in the Snowy Mountains area. Aust J Bot 26:111–121

    Article  Google Scholar 

  • Slatyer RO, Noble IR (1992) Dynamics of montane treelines. In: Hansen AJ, di Castri F (eds) Landscape boundaries. Consequences for biotic diversity and ecological flows. Ecol Stud (Springer) 92:346–359

    Google Scholar 

  • Smith AP, Young TP (1994) Population biology of Senecio keniodendron (Asteraceae)—an afroalpine giant rosette plant. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 273–293

    Chapter  Google Scholar 

  • Sowell JB, Koutnik DL, Lansing AJ (1982) Cuticular transpiration of whitebark pine (Pinus albicaulis) within a Sierra Nevadan timberline ecotone, USA. Arct Alp Res 14:97–103

    Article  Google Scholar 

  • Squeo A, Rada F, Azocar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86:378–382

    Article  CAS  PubMed  Google Scholar 

  • Sundblad LG, Andersson B (1995) No difference in frost hardiness between high and low altitude Pinus sylvestris (L.) offspring. Scand J For Res 10:22–26

    Article  Google Scholar 

  • Szeicz JM, MacDonald GM (1993) A dendroecological analysis of white spruce stand dynamics at the subarctic alpine treeline. Bull Ecol Soc Am Suppl 74:452

    Google Scholar 

  • Takahashi K (1944) Die Baum- und Waldgrenze im Hida-Gebirge (japanische Nordalpen). Ein Beitrag zur Baum- und Waldgrenze Ostasiens. Jpn J Bot 13:269–343

    Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special references to the European Alps. Ecological studies, vol 31. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Tranquillini W, Plank A (1989) Oekophysiologische Untersuchungen an Rotbuchen (Fagus sylvatica L.) in verschiedenen Höhenlagen Nord- und Südtirols. Centbl Gesamte Forstwes 106:225–246

    Google Scholar 

  • Tranquillini W, Platter W (1983) Der winterliche Wasserhaushalt der Larche (Larix decidua Mill.) an der alpinen Waldgrenze. Verh Ges Ökol 11:433–443

    Google Scholar 

  • Troll C (1961) Klima und Pflanzenkleid der Erde in dreidimensionaler Sicht. Naturwissenschaften 9:332–348

    Article  Google Scholar 

  • Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5:A3–A18

    Google Scholar 

  • Turner H, Häsler R, Schönenberger W (1982) Contrasting microenvironments and their effects on carbon uptake and allocation by young conifers near alpine treeline in Switzerland. In: Waring RH (ed) Carbon uptake and allocation in subalpine ecosystems as a key to management. Forest Research Lab, Oregon State University, pp 22–30

    Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19–38

    Article  Google Scholar 

  • Villalba R, Leiva JC, Rubulls S, Suarez J, Lenzano L (1990) Climate, tree-ring, and glacial fluctuations in the Rio Frias Valley, Rio Negro, Argentina. Arct Alp Res 22:215–232

    Article  Google Scholar 

  • Walter H (1973) Vegetation of the earth in relation to climate and ecophysiological conditions. English University Press, London

    Google Scholar 

  • Walter H, Medina E (1969) Die Bodentemperatur als ausschlaggebender Faktor für die Gliederung der subalpinen und alpinen Stufe in den Anden Venezuelas. Ber Dtsch Bot Ges 82:275–281

    Google Scholar 

  • Wang WL, Körner C, Zhang ZM, Wu RD, Geng YP, Shi W, Ou XK (2013) No slope exposure effect on alpine treeline position in the Three Parallel Rivers Region, SW China. Alp Bot 123:87–95

    Google Scholar 

  • Wardle P (1968) Engelmann spruce (Picea engelmanii Engel.) at its upper limits on the Front Range, Colorado. Ecology 49:483–495

    Article  Google Scholar 

  • Wardle P (1971) An explanation for alpine timberline. N Z J Bot 9:371–402

    Article  Google Scholar 

  • Wardle P (1974) Alpine timberlines. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 371–402

    Google Scholar 

  • Wardle P (1981) Winter desiccation of conifer needles simulated by artificial freezing. Arct Alp Res 13:419–423

    Article  Google Scholar 

  • Wardle P (1993) Causes of alpine timberline: a review of the hypotheses. In: Alden J, Mastrantonio JL, Odum S (eds) Forest development in cold climates. Plenum Press, New York, pp 89–103

    Chapter  Google Scholar 

  • Wardle P (1998) Comparison of alpine timberlines in New Zealand and the Southern Andes. Roy Soc New Zealand Miscel Publ 48:69–90

    Google Scholar 

  • Wesche K (2000) The high-altitude environment of Mt. Elgon (Uganda, Kenya): Climate, vegetation, and the impact of fire. Ecotrop Monogr 2. Carthaus, Bonn

    Google Scholar 

  • Wieser G (1997) Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiol 17:473–477

    Article  CAS  PubMed  Google Scholar 

  • Wijmstra TA (1978) Palaeobotany and climate change. In: Gribbin J (ed) Climatic change. Cambridge University Press, Cambridge, pp 25–45

    Google Scholar 

  • Winiger M (1981) Zur thermisch-hygrischen Gliederung des Mount Kenya. Erdkunde 35:248–263

    Article  Google Scholar 

  • Yang Y, Sun H, Körner C (2020) Explaining the exceptional 4270 m high elevation limit of an evergreen oak in the south-eastern Himalayas. Tree Phys 40:1327–1342

    Google Scholar 

  • Zoller H (1987) Zur Geschichte der Vegetation im Spätglazial und Holozän der Schweiz. Mitt Naturforsch Ges Luzern 29:123–149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körner, C. (2021). Alpine treelines. In: Alpine Plant Life. Springer, Cham. https://doi.org/10.1007/978-3-030-59538-8_7

Download citation

Publish with us

Policies and ethics