Next Issue
Volume 13, February-1
Previous Issue
Volume 13, January-1
 
 

Plants, Volume 13, Issue 2 (January-2 2024) – 182 articles

Cover Story (view full-size image):

Research on Centaurea cineraria L. subsp. cineraria revealed that this endemic plant from Italy provides extracts with inhibitory activity on the radicle growth of broomrapes (parasitic weeds from Phelipanche ramosa, Orobanche minor, Orobanche crenata, and Orobanche cumana). The purification of the most active extract gave some active sesquiterpene lactones, namely isocnicin, cnicin, and salonitenolide. Structure–activity relationships emphasized the significance of α,β-unsaturated lactone rings. The acetylation of salonitenolide produced a significantly more active derivative, attributed to distinct lipophilicity and the absence of H-bond donors. The potential of C. cineraria in managing parasitic weeds and developing herbicides based on natural products was then revealed. View this paper

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 3938 KiB  
Article
Characterization of Rhizosphere Microbial Diversity and Selection of Plant-Growth-Promoting Bacteria at the Flowering and Fruiting Stages of Rapeseed
by Mengjiao Wang, Haiyan Sun and Zhimin Xu
Plants 2024, 13(2), 329; https://doi.org/10.3390/plants13020329 - 22 Jan 2024
Viewed by 1040
Abstract
Plant rhizosphere microorganisms play an important role in modulating plant growth and productivity. This study aimed to elucidate the diversity of rhizosphere microorganisms at the flowering and fruiting stages of rapeseed (Brassica napus). Microbial communities in rhizosphere soils were analyzed via [...] Read more.
Plant rhizosphere microorganisms play an important role in modulating plant growth and productivity. This study aimed to elucidate the diversity of rhizosphere microorganisms at the flowering and fruiting stages of rapeseed (Brassica napus). Microbial communities in rhizosphere soils were analyzed via high-throughput sequencing of 16S rRNA for bacteria and internal transcribed spacer (ITS) DNA regions for fungi. A total of 401 species of bacteria and 49 species of fungi in the rhizosphere soil samples were found in three different samples. The composition and diversity of rhizosphere microbial communities were significantly different at different stages of rapeseed growth. Plant-growth-promoting rhizobacteria (PGPRs) have been widely applied to improve plant growth, health, and production. Thirty-four and thirty-one PGPR strains were isolated from the rhizosphere soil samples collected at the flowering and fruiting stages of rapeseed, respectively. Different inorganic phosphorus- and silicate-solubilizing and auxin-producing capabilities were found in different strains, in addition to different heavy-metal resistances. This study deepens the understanding of the microbial diversity in the rapeseed rhizosphere and provides a microbial perspective of sustainable rapeseed cultivation. Full article
Show Figures

Figure 1

18 pages, 4575 KiB  
Article
Changes in Biologically Active Compounds in Pinus sylvestris Needles after Lymantria monacha Outbreaks and Treatment with Foray 76B
by Vytautas Čėsna, Ieva Čėsnienė, Vaida Sirgedaitė-Šėžienė and Diana Marčiulynienė
Plants 2024, 13(2), 328; https://doi.org/10.3390/plants13020328 - 22 Jan 2024
Cited by 1 | Viewed by 891
Abstract
Due to climate warming, the occurrence of Lymantria monacha outbreaks is predicted to become more frequent, causing repeated and severe damage to conifer trees. Currently, the most effective way to control the outbreaks is aerial spraying with the bioinsecticide Foray 76B. The present [...] Read more.
Due to climate warming, the occurrence of Lymantria monacha outbreaks is predicted to become more frequent, causing repeated and severe damage to conifer trees. Currently, the most effective way to control the outbreaks is aerial spraying with the bioinsecticide Foray 76B. The present study aimed to determine the impact of both: (i) L. monacha outbreaks and (ii) treatment with Foray 76B on tree resistance through the synthesis of polyphenols (TPC), flavonoids (TFC), photosynthetic pigments (chlorophyll a and b, carotenoids), lipid peroxidation (MDA), and soluble sugars (TSS) in Pinus sylvestris needles. Samples were collected from visually healthy (control), damaged/untreated, and damaged/Foray 76B-treated plots in 2020 and 2021 (following year after the outbreaks). The results revealed that L. monacha outbreaks contributed to the increase in TPC by 34.1% in 2020 and 26.7% in 2021. TFC negatively correlated with TPC, resulting in 17.6% and 11.1% lower concentrations in L. monacha-damaged plots in 2020 and 2021, respectively. A decrease in MDA was found in the damaged plots in both 2020 and 2021 (10.2% and 23.3%, respectively), which was associated with the increased synthesis of photosynthetic pigments in 2021. The research results also showed that in the following year after the outbreaks, the increase in the synthesis of photosynthetic pigments was also affected by the treatment with Foray 76B. Moreover, the increase in the synthesis of TPC and photosynthetic pigments in the damaged plots in 2021 illustrates the ability of pines to keep an activated defense system to fight biotic stress. Meanwhile, a higher synthesis of photosynthetic pigments in Foray 76B-treated plots indicates a possible effect of the treatment on faster tree growth and forest recovery after L. monacha outbreaks. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Graphical abstract

24 pages, 1023 KiB  
Review
Plant Growth Regulation in Cell and Tissue Culture In Vitro
by Taras P. Pasternak and Douglas Steinmacher
Plants 2024, 13(2), 327; https://doi.org/10.3390/plants13020327 - 22 Jan 2024
Cited by 3 | Viewed by 4994
Abstract
Precise knowledge of all aspects controlling plant tissue culture and in vitro plant regeneration is crucial for plant biotechnologists and their correlated industry, as there is increasing demand for this scientific knowledge, resulting in more productive and resilient plants in the field. However, [...] Read more.
Precise knowledge of all aspects controlling plant tissue culture and in vitro plant regeneration is crucial for plant biotechnologists and their correlated industry, as there is increasing demand for this scientific knowledge, resulting in more productive and resilient plants in the field. However, the development and application of cell and tissue culture techniques are usually based on empirical studies, although some data-driven models are available. Overall, the success of plant tissue culture is dependent on several factors such as available nutrients, endogenous auxin synthesis, organic compounds, and environment conditions. In this review, the most important aspects are described one by one, with some practical recommendations based on basic research in plant physiology and sharing our practical experience from over 20 years of research in this field. The main aim is to help new plant biotechnologists and increase the impact of the plant tissue culture industry worldwide. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration)
Show Figures

Figure 1

12 pages, 2093 KiB  
Article
Influence of β-Ionone in the Phytotoxicity of the Rhizome of Iris pallida Lam
by Yourk Sothearith, Kwame Sarpong Appiah, Chhin Sophea, Jady Smith, Say Samal, Takashi Motobayashi and Yoshiharu Fujii
Plants 2024, 13(2), 326; https://doi.org/10.3390/plants13020326 - 22 Jan 2024
Viewed by 902
Abstract
Iris pallida Lam., also known as Sweetie Iris, is a perennial ornamental and medicinal plant that produces a wide range of secondary metabolites. The Sweetie Iris was recently reported to have high allelopathic properties with the potential to be explored in sustainable weed [...] Read more.
Iris pallida Lam., also known as Sweetie Iris, is a perennial ornamental and medicinal plant that produces a wide range of secondary metabolites. The Sweetie Iris was recently reported to have high allelopathic properties with the potential to be explored in sustainable weed management. This study aimed to identify and evaluate the contributions of compounds involved in the inhibitory effects of the rhizome of Sweetie Iris. High-performance liquid chromatography (HPLC) analysis was used to determine the content of β-ionone in the rhizome of Sweetie Iris. The phytotoxicity of β-ionone was evaluated on lettuce (Lactuca sativa L.) and other test plants. The content of β-ionone in the crude extract of Sweetie Iris rhizome was found to be 20.0 mg g−1 by HPLC analysis. The phytotoxicity bioassay showed that β-ionone had strong inhibitory activity on the growth of lettuce (Lactuca sativa L.) and the other test plants, including Taraxacum officinale, Stellaria media, Eleusine indica, Amaranthus hybridus, Vicia villosa, and Brassica napus. At a concentration of 23.0 µg mL−1, β-ionone inhibited the growth of all test plant species treated. Therefore, β-ionone is an active compound among the other allelopathic substances contained in the rhizome of Sweetie Iris. Full article
(This article belongs to the Special Issue Phytochemical and Biological Activity of Plant Extracts)
Show Figures

Figure 1

21 pages, 4775 KiB  
Article
Physiological Mechanism through Which Al Toxicity Inhibits Peanut Root Growth
by Jianning Shi, Min Zhao, Feng Zhang, Didi Feng, Shaoxia Yang, Yingbin Xue and Ying Liu
Plants 2024, 13(2), 325; https://doi.org/10.3390/plants13020325 - 22 Jan 2024
Cited by 1 | Viewed by 918
Abstract
Al (Aluminum) poisoning is a significant limitation to crop yield in acid soil. However, the physiological process involved in the peanut root response to Al poisoning has not been clarified yet and requires further research. In order to investigate the influence of Al [...] Read more.
Al (Aluminum) poisoning is a significant limitation to crop yield in acid soil. However, the physiological process involved in the peanut root response to Al poisoning has not been clarified yet and requires further research. In order to investigate the influence of Al toxicity stress on peanut roots, this study employed various methods, including root phenotype analysis, scanning of the root, measuring the physical response indices of the root, measurement of the hormone level in the root, and quantitative PCR (qPCR). This research aimed to explore the physiological mechanism underlying the reaction of peanut roots to Al toxicity. The findings revealed that Al poisoning inhibits the development of peanut roots, resulting in reduced biomass, length, surface area, and volume. Al also significantly affects antioxidant oxidase activity and proline and malondialdehyde contents in peanut roots. Furthermore, Al toxicity led to increased accumulations of Al and Fe in peanut roots, while the contents of zinc (Zn), cuprum (Cu), manganese (Mn), kalium (K), magnesium (Mg), and calcium (Ca) decreased. The hormone content and related gene expression in peanut roots also exhibited significant changes. High concentrations of Al trigger cellular defense mechanisms, resulting in differentially expressed antioxidase genes and enhanced activity of antioxidases to eliminate excessive ROS (reactive oxygen species). Additionally, the differential expression of hormone-related genes in a high-Al environment affects plant hormones, ultimately leading to various negative effects, for example, decreased biomass of roots and hindered root development. The purpose of this study was to explore the physiological response mechanism of peanut roots subjected to aluminum toxicity stress, and the findings of this research will provide a basis for cultivating Al-resistant peanut varieties. Full article
(This article belongs to the Special Issue Molecular Genetics and Breeding of Oilseed Crops)
Show Figures

Figure 1

11 pages, 2549 KiB  
Article
Codon Optimization Enables the Geneticin Resistance Gene to Be Applied Efficiently to the Genetic Manipulation of the Plant Pathogenic Fungus Botrytis cinerea
by Maoyao Tang, Yangyizhou Wang, Kexin Wang, Yuanhang Zhou, Enshuang Zhao, Hao Zhang, Mingzhe Zhang, Hang Yu, Xi Zhao and Guihua Li
Plants 2024, 13(2), 324; https://doi.org/10.3390/plants13020324 - 22 Jan 2024
Viewed by 795
Abstract
Botrytis cinerea can infect almost all of the important horticultural crops and cause severe economic losses globally every year. Modifying candidate genes and studying the phenotypic changes are among the most effective ways to unravel the pathogenic mechanism of this crop killer. However, [...] Read more.
Botrytis cinerea can infect almost all of the important horticultural crops and cause severe economic losses globally every year. Modifying candidate genes and studying the phenotypic changes are among the most effective ways to unravel the pathogenic mechanism of this crop killer. However, few effective positive selection markers are used for B. cinerea genetic transformation, which limits multiple modifications to the genome, especially genes involving redundant functions. Here, we optimized a geneticin resistance gene, BcNPTII, based on the codon usage preference of B. cinerea. We found that BcNPTII can greatly increase the transformation efficiency of B. cinerea under G418 selection, with approximately 30 times higher efficiency than that of NPTII, which is applied efficiently to transform Magnaporthe oryzae. Using the gene replacement method, we successfully knocked out the second gene BOT2, with BcNPTII as the selection marker, from the mutant ΔoahA, in which OAHA was first replaced by the hygromycin resistance gene HPH in a field strain. We obtained the double knockout mutant ΔoahA Δbot2. Our data show that the codon-optimized BcNPTII is an efficient positive selection marker for B. cinerea transformation and can be used for various genetic manipulations in B. cinerea, including field wild-type strains. Full article
(This article belongs to the Special Issue Plant Pathology and Epidemiology for Grain, Pulses, and Cereal Crops)
Show Figures

Figure 1

13 pages, 2807 KiB  
Review
Recent Advances in the Specialized Metabolites Mediating Resistance to Insect Pests and Pathogens in Tea Plants (Camellia sinensis)
by Jin Zhang, Yongchen Yu, Xiaona Qian, Xin Zhang, Xiwang Li and Xiaoling Sun
Plants 2024, 13(2), 323; https://doi.org/10.3390/plants13020323 - 22 Jan 2024
Viewed by 1005
Abstract
Tea is the second most popular nonalcoholic beverage consumed in the world, made from the buds and young leaves of the tea plants (Camellia sinensis). Tea trees, perennial evergreen plants, contain abundant specialized metabolites and suffer from severe herbivore and pathogen [...] Read more.
Tea is the second most popular nonalcoholic beverage consumed in the world, made from the buds and young leaves of the tea plants (Camellia sinensis). Tea trees, perennial evergreen plants, contain abundant specialized metabolites and suffer from severe herbivore and pathogen attacks in nature. Thus, there has been considerable attention focusing on investigating the precise function of specialized metabolites in plant resistance against pests and diseases. In this review, firstly, the responses of specialized metabolites (including phytohormones, volatile compounds, flavonoids, caffeine, and L-theanine) to different attacks by pests and pathogens were compared. Secondly, research progress on the defensive functions and action modes of specialized metabolites, along with the intrinsic molecular mechanisms in tea plants, was summarized. Finally, the critical questions about specialized metabolites were proposed for better future research on phytohormone-dependent biosynthesis, the characteristics of defense responses to different stresses, and molecular mechanisms. This review provides an update on the biological functions of specialized metabolites of tea plants in defense against two pests and two pathogens. Full article
(This article belongs to the Special Issue Tea Germplasm Improvement and Resistance Breeding)
Show Figures

Figure 1

13 pages, 1559 KiB  
Review
NPF and NRT2 from Pisum sativum Potentially Involved in Nodule Functioning: Lessons from Medicago truncatula and Lotus japonicus
by Marie-Christine Morère-Le Paven, Thibault Clochard and Anis M. Limami
Plants 2024, 13(2), 322; https://doi.org/10.3390/plants13020322 - 22 Jan 2024
Viewed by 939
Abstract
In addition to absorbing nitrogen from the soil, legumes have the ability to use atmospheric N2 through symbiotic nitrogen fixation. Therefore, legumes have developed mechanisms regulating nodulation in response to the amount of nitrate in the soil; in the presence of high [...] Read more.
In addition to absorbing nitrogen from the soil, legumes have the ability to use atmospheric N2 through symbiotic nitrogen fixation. Therefore, legumes have developed mechanisms regulating nodulation in response to the amount of nitrate in the soil; in the presence of high nitrate concentrations, nodulation is inhibited, while low nitrate concentrations stimulate nodulation and nitrogen fixation. This allows the legumes to switch from soil nitrogen acquisition to symbiotic nitrogen fixation. Recently, particular interest has been given to the nitrate transporters, such as Nitrate Transporter1/Peptide transporter Family (NPF) and Nitrate Transporter 2 (NRT2), having a role in the functioning of nodules. Nitrate transporters of the two model plants, Lotus japonicus and Medicago truncatula, shown to have a positive and/or a negative role in nodule functioning depending on nitrate concentration, are presented in this article. In particular, the following transporters were thoroughly studied: (i) members of NPF transporters family, such as LjNPF8.6 and LjNPF3.1 in L. japonicus and MtNPF1.7 and MtNPF7.6 in M. truncatula, and (ii) members of NRT2 transporters family, such as LjNRT2.4 and LjNRT2.1 in L. japonicus and MtNRT2.1 in M. truncatula. Also, by exploiting available genomic and transcriptomic data in the literature, we have identified the complete PsNPF family in Pisum sativum (69 sequences previously described and 21 new that we have annotated) and putative nitrate transporters candidate for playing a role in nodule functioning in P. sativum. Full article
(This article belongs to the Special Issue Metabolism and Stress in Plants)
Show Figures

Figure 1

17 pages, 6162 KiB  
Article
Antifungal Activity of Cedrol from Cunninghamia lanceolate var. konishii against Phellinus noxius and Its Mechanism
by Wen-Wei Hsiao, Ka-Man Lau, Shih-Chang Chien, Fang-Hua Chu, Wen-Hsin Chung and Sheng-Yang Wang
Plants 2024, 13(2), 321; https://doi.org/10.3390/plants13020321 - 21 Jan 2024
Viewed by 1431
Abstract
Phellinus noxius is a highly destructive fungus that causes brown root disease in trees, leading to decay and death. In Taiwan, five prized woods—Taiwania cryptomerioides, Calocedrus macrolepis var. formosana, Cunninghamia lanceolata var. konishii, Chamaecyparis formosensis, and Chamaecyparis obtusa [...] Read more.
Phellinus noxius is a highly destructive fungus that causes brown root disease in trees, leading to decay and death. In Taiwan, five prized woods—Taiwania cryptomerioides, Calocedrus macrolepis var. formosana, Cunninghamia lanceolata var. konishii, Chamaecyparis formosensis, and Chamaecyparis obtusa var. formosana—are known for their fragrance and durability. This study aims to explore the anti-brown-root-rot-fungus activity of Cunninghamia lanceolata var. konishii (CL) essential oil (CLOL) and its primary components, while also delving into their mechanisms of action and inhibition pathways. The essential oil (CLOL) from CL wood demonstrated significant efficacy against P. noxius, with an inhibitory concentration (IC50) of 37.5 µg/mL. Cedrol, the major component (78.48%) in CLOL, emerged as a potent antifungal agent, surpassing the reference drug triflumizole. Further assays with cedrol revealed a stronger anti-brown-root-disease activity (IC50 = 15.7 µg/mL) than triflumizole (IC50 = 32.1 µg/mL). Scanning electron microscopy showed deformation and rupture of fungal hyphae treated with CLOL and cedrol, indicating damage to the fungal cell membrane. Cedrol-induced oxidative stress in P. noxius was evidenced by increased reactive oxygen species (ROS) levels, leading to DNA fragmentation, mitochondrial membrane potential reduction, and fungal apoptosis through the mitochondrial pathway. Gel electrophoresis confirmed cedrol-induced DNA fragmentation, whereas TUNEL staining demonstrated increased apoptosis with rising cedrol concentrations. Moreover, protein expression analysis revealed cedrol-triggered release of cytochrome c, activation of caspase-9, and subsequent caspase-3 activation, initiating a caspase cascade reaction. This groundbreaking study establishes cedrol as the first compound to induce apoptosis in P. noxius while inhibiting its growth through oxidative stress, an increase in mitochondrial membrane permeability, and activation of the mitochondrial pathway. The findings offer compelling evidence for cedrol’s potential as an effective antifungal agent against the destructive brown root disease caused by P. noxius. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

16 pages, 1149 KiB  
Article
Patterns of Leaf and Fruit Morphological Variation in Marginal Populations of Acer tataricum L. subsp. tataricum
by Igor Poljak, Antonio Vidaković, Luka Benić, Katarina Tumpa, Marilena Idžojtić and Zlatko Šatović
Plants 2024, 13(2), 320; https://doi.org/10.3390/plants13020320 - 21 Jan 2024
Viewed by 787
Abstract
Marginal populations are usually smaller and more isolated and grow in less favourable conditions than those at the distribution centre. The variability of these populations is of high importance, as it can support the adaptations needed for the conditions that they grow in. [...] Read more.
Marginal populations are usually smaller and more isolated and grow in less favourable conditions than those at the distribution centre. The variability of these populations is of high importance, as it can support the adaptations needed for the conditions that they grow in. In this research, the morphological variability of eight Tatar maple (Acer tataricum L. subsp. tataricum) populations was analysed. Tatar maple is an insect-pollinated and wind-dispersed shrub/tree, whose northwestern distribution edge is in southeastern Europe. Morphometric methods were used to analyse the variability of the populations using leaf and fruit morphology. The research revealed significant differences between and within populations. Furthermore, differences in the distribution of the total variability were noted, which suggest that different evolutionarily factors affect different plant traits. Correlation analysis confirmed a weak dependency between the vegetative and generative traits. In addition, no evidence was found for the presence of isolation by environment (IBE). However, the Mantel test for isolation by distance (IBD) was significant for the leaf morphometric traits and non-significant for the fruit morphometric traits. Being the marginal leading-edge populations, they are younger and were less likely to have had time for adaptation to local environments, which would have resulted in the development of IBE. Overall, edge populations of Tatar maple were characterised by great morphological variability, which helps these populations in their response to the intensive selective pressures they face in their environment. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

13 pages, 1893 KiB  
Article
Nematocidal Potential of Phenolic Acids: A Phytochemical Seed-Coating Approach to Soybean Cyst Nematode Management
by Ping Yates, Juddy Janiol, Changbao Li and Bao-Hua Song
Plants 2024, 13(2), 319; https://doi.org/10.3390/plants13020319 - 21 Jan 2024
Viewed by 875
Abstract
Soybeans, one of the most valuable crops worldwide, are annually decimated by the soybean cyst nematode (SCN), Heterodera glycines, resulting in massive losses in soybean yields and economic revenue. Conventional agricultural pesticides are generally effective in the short term; however, they pose [...] Read more.
Soybeans, one of the most valuable crops worldwide, are annually decimated by the soybean cyst nematode (SCN), Heterodera glycines, resulting in massive losses in soybean yields and economic revenue. Conventional agricultural pesticides are generally effective in the short term; however, they pose growing threats to human and environmental health; therefore, alternative SCN management strategies are urgently needed. Preliminary findings show that phenolic acids are significantly induced during SCN infection and exhibit effective nematocidal activities in vitro. However, it is unclear whether these effects occur in planta or elicit any negative effects on plant growth traits. Here, we employed a phytochemical-based seed coating application on soybean seeds using phenolic acid derivatives (4HBD; 2,3DHBA) at variable concentrations and examined SCN inhibition against two SCN types. Moreover, we also examined plant growth traits under non-infected or SCN infected conditions. Notably, 2,3DHBA significantly inhibited SCN abundance in Race 2-infected plants with increasingly higher chemical doses. Interestingly, neither compound negatively affected soybean growth traits in control or SCN-infected plants. Our findings suggest that a phytochemical-based approach could offer an effective, more environmentally friendly solution to facilitate current SCN management strategies and fast-track the development of biopesticides to sustainably manage devastating pests such as SCN. Full article
(This article belongs to the Special Issue Biochemical Defenses of Plants)
Show Figures

Figure 1

18 pages, 3289 KiB  
Article
FlgI Is a Sec-Dependent Effector of Candidatus Liberibacter asiaticus That Can Be Blocked by Small Molecules Identified Using a Yeast Screen
by Siliang Zuo, Linghui Xu, Huiyan Zhang, Meiqian Jiang, Sifeng Wu, Lian-Hui Zhang, Xiaofan Zhou and Junxia Wang
Plants 2024, 13(2), 318; https://doi.org/10.3390/plants13020318 - 21 Jan 2024
Viewed by 1001
Abstract
Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding [...] Read more.
Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and PHI-base searches. One among them, FlgI, was found to inhibit yeast growth when expressed in Saccharomyces cerevisiae. The expression of the signal peptide of FlgI fused with PhoA in Escherichia coli resulted in the discovery that FlgI was a novel Sec-dependent secretory protein. We further found that the carboxyl-terminal HA-tagged FlgI was secreted via outer membrane vesicles in Sinorhizobium meliloti. Fluoresence localization of transient expression FlgI-GFP in Nicotiana benthamiana revealed that FlgI is mainly localized in the cytoplasm, cell periphery, and nuclear periphery of tobacco cells. In addition, our experimental results suggest that FlgI has a strong ability to induce callose deposition and cell necrosis in N. benthamiana. Finally, by screening a large library of compounds in a high-throughput format, we found that cyclosporin A restored the growth of FlgI-expressing yeast. These results confirm that FlgI is a novel Sec-dependent effector, enriching our understanding of CLas pathogenicity and helping to develop new and more effective strategies to manage HLB. Full article
Show Figures

Figure 1

17 pages, 4367 KiB  
Article
Allelopathy and Identification of Volatile Components from the Roots and Aerial Parts of Astragalus mongholicus Bunge
by Xiu Wang, Yaqi Liu, Na Peng, Haitao Yu, Yu Ma, Mingxin Zhang, Yaoyao Wang, Yi Wang and Weiwei Gao
Plants 2024, 13(2), 317; https://doi.org/10.3390/plants13020317 - 20 Jan 2024
Viewed by 890
Abstract
The volatile compounds produced by plants play an important role in plant growth, plant communication, and resistance to biological and abiotic stresses. Astragalus membranaceus var. mongholicus (AM) is a perennial herbaceous plant (Leguminosae) that is widely cultivated in northwest China. The [...] Read more.
The volatile compounds produced by plants play an important role in plant growth, plant communication, and resistance to biological and abiotic stresses. Astragalus membranaceus var. mongholicus (AM) is a perennial herbaceous plant (Leguminosae) that is widely cultivated in northwest China. The bioactive compounds in its root have shown various pharmacological activities. Root rot disease caused by Fusarium spp. often occurs in AM planting with increasing severity in continuous monoculture. It is currently still unclear what are the effects of the volatile compounds produced by fresh AM on itself, other crops cultivated on the same field after AM, pathogen, and rhizobia. In this study, we found that seed germination and seedling growth of AM, lettuce (Lactuca sativa L.), and wheat (Triticum aestivum L.) could be affected if they were in an enclosed space with fresh AM tissue. Additionally, 90 volatile compounds were identified by SPME-GC-MS from whole AM plant during the vegetative growth, 36 of which were specific to aerial parts of AM (stems and leaves, AMA), 17 to roots (AMR), and 37 were found in both AMA and AMR. To further identify the allelopathic effects of these volatile compounds, five compounds (1-hexanol, (E)-2-hexenal, (E,E)-2,4-decadienal, hexanal, and eugenol) with relatively high content in AM were tested on three receptor plants and two microorganisms. We found that (E,E)-2,4-decadienal and (E)-2-hexenal showed significant inhibitory effects on the growth of AM and lettuce. One-hexanol and hexanal suppressed the growth of wheat, while eugenol showed a similar effect on all three plant species. Moreover, the activities of these compounds were dose dependent. Notably, we discovered that (E)-2-hexenal and eugenol also inhibited the growth of the pathogen Fusarium solani by as high as 100%. Meanwhile, all five compounds tested suppressed the rhizobia Sinorhizobium fredii. In summary, this study furthered our understanding of the comprehensive allelopathic effects of the main volatile components of AM. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

17 pages, 7139 KiB  
Article
Exogenous Spermidine and Amino-Ethoxyvinylglycine Improve Nutritional Quality via Increasing Amino Acids in Rice Grains
by Ying Liu, Yi Jiang, Xiaohan Zhong, Chaoqing Li, Yunji Xu, Kuanyu Zhu, Weilu Wang, Junfei Gu, Hao Zhang, Zhiqin Wang, Lijun Liu, Jianhua Zhang, Weiyang Zhang and Jianchang Yang
Plants 2024, 13(2), 316; https://doi.org/10.3390/plants13020316 - 20 Jan 2024
Viewed by 888
Abstract
Polyamines and ethylene are key regulators of the growth and development, quality formation, and stress response of cereal crops such as rice. However, it remains unclear whether the application of these regulators could improve the nutritional quality via increasing amino acids in rice [...] Read more.
Polyamines and ethylene are key regulators of the growth and development, quality formation, and stress response of cereal crops such as rice. However, it remains unclear whether the application of these regulators could improve the nutritional quality via increasing amino acids in rice grains. This study examined the role of exogenous polyamines and ethylene in regulating amino acid levels in the milled rice of earlier-flowered superior grain (SG) and later-flowered inferior grain (IG). Two rice varieties were field grown, and either 1 mmol L−1 spermidine (Spd) or 50 μmol L−1 amino-ethoxyvinylglycine (AVG) was applied to panicles at the early grain-filling stage. The control check (CK) was applied with deionized water. The results showed that the Spd or AVG applications significantly increased polyamine (spermine (Spm) and Spd) contents and decreased ethylene levels in both SG and IG and significantly increased amino acid levels in the milled rice of SG and IG relative to the CK. Collectively, the application of Spd or AVG can increase amino acid-based nutritional quality and grain yield via increasing polyamine (Spm and Spd) contents and reducing ethylene levels in both SG and IG of rice. Full article
(This article belongs to the Special Issue Cultivation Regulation of Cereal Crops)
Show Figures

Figure 1

15 pages, 3527 KiB  
Article
Phenolic Compounds and Antioxidant Capacity Comparison of Wild-Type and Yellow-Leaf gl1 Mutant of Lagerstroemia indica
by Sumei Li, Min Yin, Peng Wang, Lulu Gao, Fenni Lv, Rutong Yang, Ya Li, Qing Wang, Linfang Li, Yongdong Liu and Shuan Wang
Plants 2024, 13(2), 315; https://doi.org/10.3390/plants13020315 - 20 Jan 2024
Viewed by 782
Abstract
Background: The yellow-leaf gl1 mutant of Lagerstroemia indica exhibits an altered phenylpropanoid metabolism pathway compared to wild-type (WT). However, details on the metabolites associated with leaf color variation, including color-specific metabolites with bioactive constituents, are not fully understood. Methods: Chemical and metabolomics approaches [...] Read more.
Background: The yellow-leaf gl1 mutant of Lagerstroemia indica exhibits an altered phenylpropanoid metabolism pathway compared to wild-type (WT). However, details on the metabolites associated with leaf color variation, including color-specific metabolites with bioactive constituents, are not fully understood. Methods: Chemical and metabolomics approaches were used to compare metabolite composition and antioxidant capacity between the gl1 mutant and WT leaves. Results: The mutant exhibited an irregular xylem structure with a significantly lower phenolic polymer lignin content and higher soluble phenolic compounds. Untargeted metabolomics analysis identified phenolic compounds, particularly lignans, as key differential metabolites between gl1 and WT, with a significant increase in the mutant. The neolignan derivative balanophonin-4-O-D-glu was identified as a characteristic metabolite in the gl1 mutant. The soluble phenolic compounds of the gl1 mutant exhibited higher FRAP, ABTS, DPPH, and hydroxyl radical scavenging activity than in WT. Correlation analysis showed a positive relationship between antioxidant capacity and phenolic compounds in L. indica. Conclusions: Metabolites associated with leaf color variation in the L. indica yellow-leaf gl1 mutant demonstrated high antioxidant capacity, particularly in scavenging hydroxyl radicals. Full article
(This article belongs to the Special Issue Secondary Metabolites in Plants)
Show Figures

Figure 1

21 pages, 3392 KiB  
Article
How Nutritious Are French Beans (Phaseolus vulgaris L.) from the Citizen Science Experiment?
by Lovro Sinkovič, Vanja Blažica, Bojan Blažica, Vladimir Meglič and Barbara Pipan
Plants 2024, 13(2), 314; https://doi.org/10.3390/plants13020314 - 20 Jan 2024
Viewed by 1404
Abstract
French beans are tender, immature, edible pods that are harvested early in the plant’s growth cycle and are usually eaten cooked. The growth habits of French beans were studied for the first time in a Citizen Science experiment, and 19 pod samples were [...] Read more.
French beans are tender, immature, edible pods that are harvested early in the plant’s growth cycle and are usually eaten cooked. The growth habits of French beans were studied for the first time in a Citizen Science experiment, and 19 pod samples were collected for further nutritional analysis. Various macronutrients (e.g., protein, ash, fat, carbohydrates, amino acids) and multi-element profiles were determined. A survey of their growing habits revealed that beans are usually planted once or twice a year in May and June at a length of 5–10 m, with a predominance of dwarf beans cultivation over climbing varieties, and pest resistance and stringless pods are the most important characteristics when deciding on a bean. Homogenised freeze-dried pod samples contained 16.1–23.1% protein, 4.5–8.2% ash, 0.1–1.1% fat, and 62.0–70.6% carbohydrates and had a caloric value of 337–363 kcal/100 g. Of the 17 free amino acids identified, 8 were essential (histidine, threonine, methionine, valine, lysine, isoleucine, leucine, phenylalanine) and 9 were non-essential (cysteine, aspartic acid, serine, glutamic acid, glycine, arginine, alanine, proline, tyrosine); meanwhile, of the 12 elements, 5 were macroelements and 7 were microelements. The predominant free amino acids were aspartic acid, glutamic acid, and serine. In the multiple comparisons (Box and Whisker plot), the parameters caloric value and iron showed the strongest response. A very strong positive significant Pearson correlation (≥0.95) was found for five pairs of variables within the free amino acids. Comparison of the nutrient data obtained in the pods showed near-perfect or high complementarity (85.2–103.4%) with the food composition databases for half of the parameters, suggesting that the home-grown French beans from the Citizen Science experiment are a highly nutritious vegetable. Full article
(This article belongs to the Special Issue Breeding and Cultivation Management of Legumes, Volume II)
Show Figures

Figure 1

26 pages, 796 KiB  
Review
Advances in the Involvement of Metals and Metalloids in Plant Defense Response to External Stress
by Lingxiao Zhang, Zhengyan Liu, Yun Song, Junkang Sui and Xuewen Hua
Plants 2024, 13(2), 313; https://doi.org/10.3390/plants13020313 - 20 Jan 2024
Cited by 1 | Viewed by 1179
Abstract
Plants, as sessile organisms, uptake nutrients from the soil. Throughout their whole life cycle, they confront various external biotic and abiotic threats, encompassing harmful element toxicity, pathogen infection, and herbivore attack, posing risks to plant growth and production. Plants have evolved multifaceted mechanisms [...] Read more.
Plants, as sessile organisms, uptake nutrients from the soil. Throughout their whole life cycle, they confront various external biotic and abiotic threats, encompassing harmful element toxicity, pathogen infection, and herbivore attack, posing risks to plant growth and production. Plants have evolved multifaceted mechanisms to cope with exogenous stress. The element defense hypothesis (EDH) theory elucidates that plants employ elements within their tissues to withstand various natural enemies. Notably, essential and non-essential trace metals and metalloids have been identified as active participants in plant defense mechanisms, especially in nanoparticle form. In this review, we compiled and synthetized recent advancements and robust evidence regarding the involvement of trace metals and metalloids in plant element defense against external stresses that include biotic stressors (such as drought, salinity, and heavy metal toxicity) and abiotic environmental stressors (such as pathogen invasion and herbivore attack). We discuss the mechanisms underlying the metals and metalloids involved in plant defense enhancement from physiological, biochemical, and molecular perspectives. By consolidating this information, this review enhances our understanding of how metals and metalloids contribute to plant element defense. Drawing on the current advances in plant elemental defense, we propose an application prospect of metals and metalloids in agricultural products to solve current issues, including soil pollution and production, for the sustainable development of agriculture. Although the studies focused on plant elemental defense have advanced, the precise mechanism under the plant defense response still needs further investigation. Full article
Show Figures

Figure 1

18 pages, 9550 KiB  
Article
Transcriptome Expression Profiling Reveals the Molecular Response to Salt Stress in Gossypium anomalum Seedlings
by Huan Yu, Qi Guo, Wei Ji, Heyang Wang, Jingqi Tao, Peng Xu, Xianglong Chen, Wuzhimu Ali, Xuan Wu, Xinlian Shen, Yinfeng Xie and Zhenzhen Xu
Plants 2024, 13(2), 312; https://doi.org/10.3390/plants13020312 - 20 Jan 2024
Cited by 1 | Viewed by 989
Abstract
Some wild cotton species are remarkably tolerant to salt stress, and hence represent valuable resources for improving salt tolerance of the domesticated allotetraploid species Gossypium hirsutum L. Here, we first detected salt-induced stress changes in physiological and biochemical indexes of G. anomalum, [...] Read more.
Some wild cotton species are remarkably tolerant to salt stress, and hence represent valuable resources for improving salt tolerance of the domesticated allotetraploid species Gossypium hirsutum L. Here, we first detected salt-induced stress changes in physiological and biochemical indexes of G. anomalum, a wild African diploid cotton species. Under 350 mmol/L NaCl treatment, the photosynthetic parameters declined significantly, whereas hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents increased. Catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activity and proline (PRO) content also significantly increased, reaching peak values at different stages of salt stress. We used RNA-Seq to characterize 15,476 differentially expressed genes in G. anomalum roots after 6, 12, 24, 72, and 144 h of salt stress. Gene Ontology enrichment analysis revealed these genes to be related to sequence-specific DNA and iron ion binding and oxidoreductase, peroxidase, antioxidant, and transferase activity; meanwhile, the top enriched pathways from the Kyoto Encyclopedia of Genes and Genomes database were plant hormone signal transduction, phenylpropanoid biosynthesis, fatty acid degradation, carotenoid biosynthesis, zeatin biosynthesis, starch and sucrose metabolism, and MAPK signaling. A total of 1231 transcription factors were found to be expressed in response to salt stress, representing ERF, MYB, WRKY, NAC, C2H2, bZIP, and HD-ZIP families. Nine candidate genes were validated by quantitative real-time PCR and their expression patterns were found to be consistent with the RNA-Seq data. These data promise to significantly advance our understanding of the molecular response to salt stress in Gossypium spp., with potential value for breeding applications. Full article
(This article belongs to the Special Issue Plant Adaptation to Environmental Abiotic Stressors)
Show Figures

Figure 1

20 pages, 2314 KiB  
Article
Combatting Sugar Beet Root Rot: Streptomyces Strains’ Efficacy against Fusarium oxysporum
by Walaa R. Abdelghany, Abeer S. Yassin, Farrag F. B. Abu-Ellail, Areej A. Al-Khalaf, Reda I. Omara and Wael N. Hozzein
Plants 2024, 13(2), 311; https://doi.org/10.3390/plants13020311 - 20 Jan 2024
Viewed by 944
Abstract
Sugar beet root rot disease triggered by Fusarium oxysporum f. sp. radicis-betae is a destructive disease and dramatically affects the production and quality of the sugar beet industry. Employing beneficial microorganisms as a biocontrol strategy represents an eco-friendly and sustainable approach to combat various [...] Read more.
Sugar beet root rot disease triggered by Fusarium oxysporum f. sp. radicis-betae is a destructive disease and dramatically affects the production and quality of the sugar beet industry. Employing beneficial microorganisms as a biocontrol strategy represents an eco-friendly and sustainable approach to combat various plant diseases. The distinct aspect of this study was to assess the antifungal and plant growth-promoting capabilities of recently isolated Streptomyces to treat sugar beet plants against infection with the phytopathogen F. oxysporum. Thirty-seven actinobacterial isolates were recovered from the rhizosphere of healthy sugar beet plants and screened for their potential to antagonize F. oxysporum in vitro. Two isolates SB3-15 and SB2-23 that displayed higher antagonistic effects were morphologically and molecularly identified as Streptomyces spp. Seed treatment with the fermentation broth of the selected Streptomyces strains SB3-15 and SB2-23 significantly reduced disease severity compared to the infected control in a greenhouse experiment. Streptomyces SB2-23 exhibited the highest protective activity with high efficacy ranging from 91.06 to 94.77% compared to chemical fungicide (86.44 to 92.36%). Furthermore, strain SB2-23 significantly increased plant weight, root weight, root length, and diameter. Likewise, it improves sucrose percentage and juice purity. As a consequence, the strain SB2-23’s intriguing biocontrol capability and sugar beet root growth stimulation present promising prospects for its utilization in both plant protection and enhancement strategies. Full article
(This article belongs to the Special Issue Mycology and Plant Pathology)
Show Figures

Figure 1

16 pages, 3109 KiB  
Article
OsCSD2 and OsCSD3 Enhance Seed Storability by Modulating Antioxidant Enzymes and Abscisic Acid in Rice
by Xiaohai Zheng, Zhiyang Yuan, Yuye Yu, Sibin Yu and Hanzi He
Plants 2024, 13(2), 310; https://doi.org/10.3390/plants13020310 - 20 Jan 2024
Viewed by 817
Abstract
Seed deterioration during storage poses a significant challenge to rice production, leading to a drastic decline in both edible quality and viability, thereby impacting overall crop yield. This study aimed to address this issue by further investigating candidate genes associated with two previously [...] Read more.
Seed deterioration during storage poses a significant challenge to rice production, leading to a drastic decline in both edible quality and viability, thereby impacting overall crop yield. This study aimed to address this issue by further investigating candidate genes associated with two previously identified QTLs for seed storability through genome association analysis. Among the screened genes, two superoxide dismutase (SOD) genes, OsCSD2 (Copper/zinc Superoxide Dismutase 2) and OsCSD3, were selected for further study. The generation of overexpression and CRISPR/Cas9 mutant transgenic lines revealed that OsCSD2 and OsCSD3 play a positive regulatory role in enhancing rice seed storability. Subsequent exploration of the physiological mechanisms demonstrated that overexpression lines exhibited lower relative electrical conductivity, indicative of reduced cell membrane damage, while knockout lines displayed the opposite trend. Furthermore, the overexpression lines of OsCSD2 and OsCSD3 showed significant increases not only in SOD but also in CAT and POD activities, highlighting an augmented antioxidant system in the transgenic seeds. Additionally, hormone profiling indicated that ABA contributed to the improved seed storability observed in these lines. In summary, these findings provide valuable insights into the regulatory mechanisms of OsCSDs in rice storability, with potential applications for mitigating grain loss and enhancing global food security. Full article
(This article belongs to the Special Issue Seed Protective Mechanisms)
Show Figures

Figure 1

15 pages, 5766 KiB  
Article
Transcriptome Analysis Reveals Key Genes Involved in the Response of Pyrus betuleafolia to Drought and High-Temperature Stress
by Panpan Ma, Guoling Guo, Xiaoqian Xu, Tingyue Luo, Yu Sun, Xiaomei Tang, Wei Heng, Bing Jia and Lun Liu
Plants 2024, 13(2), 309; https://doi.org/10.3390/plants13020309 - 20 Jan 2024
Cited by 1 | Viewed by 848
Abstract
Drought and high-temperature stress are the main abiotic stresses that alone or simultaneously affect the yield and quality of pears worldwide. However, studies on the mechanisms of drought or high-temperature resistance in pears remain elusive. Therefore, the molecular responses of Pyrus betuleafolia, [...] Read more.
Drought and high-temperature stress are the main abiotic stresses that alone or simultaneously affect the yield and quality of pears worldwide. However, studies on the mechanisms of drought or high-temperature resistance in pears remain elusive. Therefore, the molecular responses of Pyrus betuleafolia, the widely used rootstock in pear production, to drought and high temperatures require further study. Here, drought- or high-temperature-resistant seedlings were selected from many Pyrus betuleafolia seedlings. The leaf samples collected before and after drought or high-temperature treatment were used to perform RNA sequencing analysis. For drought treatment, a total of 11,731 differentially expressed genes (DEGs) were identified, including 4444 drought-induced genes and 7287 drought-inhibited genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these DEGs were more significantly enriched in plant hormone signal transduction, flavonoid biosynthesis, and glutathione metabolism. For high-temperature treatment, 9639 DEGs were identified, including 5493 significantly upregulated genes and 4146 significantly downregulated genes due to high-temperature stress. KEGG analysis showed that brassinosteroid biosynthesis, arginine metabolism, and proline metabolism were the most enriched pathways for high-temperature response. Meanwhile, the common genes that respond to both drought and high-temperature stress were subsequently identified, with a focus on responsive transcription factors, such as MYB, HSF, bZIP, and WRKY. These results reveal potential genes that function in drought or high-temperature resistance. This study provides a theoretical basis and gene resources for the genetic improvement and molecular breeding of pears. Full article
(This article belongs to the Special Issue Recent Advances in Plant Genomics and Transcriptome Analysis)
Show Figures

Figure 1

17 pages, 3130 KiB  
Article
Variability of the Main Economically Valuable Characteristics of Cyperus esculentus L. in Various Ecological and Geographical Conditions
by Nina G. Kon’kova, Valentina I. Khoreva, Vitaliy S. Popov, Tamara V. Yakusheva, Leonid L. Malyshev, Alla E. Solovyeva and Tatyana V. Shelenga
Plants 2024, 13(2), 308; https://doi.org/10.3390/plants13020308 - 20 Jan 2024
Cited by 1 | Viewed by 2035
Abstract
This study includes an assessment of the VIR (Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources) chufa collection, grown in various ecological and geographical conditions of the Russian Federation: “Yekaterininskaya experimental station VIR” in the Tambov region and “Kuban experimental station VIR” [...] Read more.
This study includes an assessment of the VIR (Center N.I. Vavilov All-Russian Institute of Plant Genetic Resources) chufa collection, grown in various ecological and geographical conditions of the Russian Federation: “Yekaterininskaya experimental station VIR” in the Tambov region and “Kuban experimental station VIR” in the Krasnodar Region during the years 2020–2021. The main indicators of the economic value of chufa accessions were studied: yield structure and nutritional value (oil, protein, starch, and fatty acid profile). The accessions were grown in regions with different climatic conditions. As a result of the study, the variability of the biochemical and yield characteristics and the correlation between the studied indicators and the factor structure of its variability were established. Of the 20 accessions used in the study, the accessions with the highest protein, starch, oil and unsaturated fatty acid contents were selected, which are the most promising for their use as a raw material to expand the range of regional functional food products, as well as for future breeding efforts in the development of new, promising regional chufa varieties. Full article
Show Figures

Figure 1

14 pages, 3794 KiB  
Article
Genotypic Differences in Morphological, Physiological and Agronomic Traits in Wheat (Triticum aestivum L.) in Response to Drought
by Qingqing Wang, Yi Wu, Suleiman Fatimoh Ozavize, Cheng-Wei Qiu, Paul Holford and Feibo Wu
Plants 2024, 13(2), 307; https://doi.org/10.3390/plants13020307 - 20 Jan 2024
Viewed by 1206
Abstract
Drought is one of the main environmental factors affecting crop growth, and breeding drought-tolerant cultivars is one of the most economic and effective ways of increasing yields and ensuring sustainable agricultural production under drought stress. To facilitate the breeding of drought-tolerant wheat, this [...] Read more.
Drought is one of the main environmental factors affecting crop growth, and breeding drought-tolerant cultivars is one of the most economic and effective ways of increasing yields and ensuring sustainable agricultural production under drought stress. To facilitate the breeding of drought-tolerant wheat, this study was conducted to evaluate genotypic differences in the drought tolerance of 334 wheat genotypes collected from China and Australia with the aim of screening for drought-tolerant and -sensitive genotypes and to elucidate the corresponding physiological mechanisms. A hydroponic-air experiment (roots exposed to air for 7 h/d and continued for 6 d) showed significant genotypic differences in shoot and root dry weights among the genotypes. The relative shoot and root dry weights, expressed as the percentage of the control, showed a normal distribution, with variation ranges of 20.2–79.7% and 32.8–135.2%, respectively. The coefficients of variation were in the range of 18.2–22.7%, and the diversity index was between 5.71 and 5.73, indicating a rich genetic diversity among the wheat genotypes for drought tolerance. Using phenotypic differences in relative dry weights in responses to drought stress, 20 of each of the most drought-tolerant and drought-sensitive genotypes were selected; these were further evaluated in pot experiments (watering withheld until the soil moisture content reached four percent). The results showed that the trends in drought tolerance were consistent with the hydroponic-air experiment, with genotypes W147 and W235 being the most drought-tolerant and W201 and W282 the most sensitive. Significant genotypic differences in water use efficiency in response to drought were observed in the pot experiment, with the drought-tolerant genotypes being markedly higher and the two sensitive genotypes being no different from the control. A marked increase in bound water content in the drought stress plants was observed in the two drought-tolerant genotypes, while a decrease occurred in the free water. The reductions in photochemical efficiencies of PSII, transpiration rates, net photosynthesis rates, chlorophyll contents and stomatal conduction in the drought-sensitive genotypes W201 and W282 under drought stress were higher than the two tolerant genotypes. This study provides a theoretical guide and germplasm for the further genetic improvement of drought tolerance in wheat. Full article
(This article belongs to the Special Issue Cereal Crop Breeding)
Show Figures

Figure 1

14 pages, 1691 KiB  
Article
Study on Syntaxonomic Diversity of Algal Cenoses in Soils of the Russian Far East, Using an Integrative Taxonomic Approach
by Shamil R. Abdullin, Arthur Yu. Nikulin, Veronika B. Bagmet, Vyacheslav Yu. Nikulin, Elena A. Zharikova, Irina V. Kiseleva and Andrey A. Gontcharov
Plants 2024, 13(2), 306; https://doi.org/10.3390/plants13020306 - 20 Jan 2024
Viewed by 746
Abstract
Soil is a unique ecosystem with peculiar biodiversity that includes cyanobacteria and algae. Traditionally, cyanobacterial and algal cenoses were described mainly using the dominance approach, rarely based on the Braun-Blanquet method (floristic classification). More importantly, in both cases, the species of cyanobacteria and [...] Read more.
Soil is a unique ecosystem with peculiar biodiversity that includes cyanobacteria and algae. Traditionally, cyanobacterial and algal cenoses were described mainly using the dominance approach, rarely based on the Braun-Blanquet method (floristic classification). More importantly, in both cases, the species of cyanobacteria and algae in communities were identified using classical methods (light microscopy) only. In this study, we present results of soil algal cenoses classification using the Braun-Blanquet approach based on species composition data obtained via an integrative approach. Characteristic tables include 19 out of 108 samples collected in the Jewish Autonomous Region, Primorsky Territory, and Sakhalin Region (Iturup Island) in 2018 and in 2020–2021. Twenty-five species of algae from four classes were identified in these sites. We described three new associations of algal communities—Coelastrelletum aeroterrestricae ass. nova, Vischerietum magnae ass. nova, Bracteacoccetum bullati ass. nova. PCA analysis corroborated the results of syntaxonomic analysis and revealed that Coelastrelletum aeroterrestricae inhabit soils with a high value of P; Vischerietum magnae inhabit soils with high value of soil organic carbon (SOC), N, and higher humidity; and Bracteacoccetum bullati inhabit soils with high K values. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

20 pages, 3116 KiB  
Article
Salt Tolerance of Sea Flax (Linum maritimum L.), a Rare Species with Conservation Interest in Eastern Spain
by Diana M. Mircea, P. Pablo Ferrer-Gallego, Inmaculada Ferrando-Pardo, Oscar Vicente, Ricardo Mir and Monica Boscaiu
Plants 2024, 13(2), 305; https://doi.org/10.3390/plants13020305 - 19 Jan 2024
Viewed by 869
Abstract
Seldom found in saltmarshes, Linum maritimum is a halophyte of great conservation interest in the eastern Iberian Peninsula. Although the species has been reported in different plant communities, there is no information on its range of salinity tolerance or mechanisms of response to [...] Read more.
Seldom found in saltmarshes, Linum maritimum is a halophyte of great conservation interest in the eastern Iberian Peninsula. Although the species has been reported in different plant communities, there is no information on its range of salinity tolerance or mechanisms of response to environmental stress factors. In this study, L. maritimum plants were subjected to increasing salt concentrations in controlled conditions in a greenhouse. After six months of watering with salt solutions, only plants from the control, 50 mM and 100 mM NaCl treatment groups survived, but seeds were produced only in the first two. Significant differences were found between the plants from the various treatment groups in terms of their growth parameters, such as plant height, fresh weight, and the quantity of flowers and fruits. The main mechanism of salt tolerance is probably related to the species’ ability to activate K+ uptake and transport to shoots to partly counteract the accumulation of toxic Na+ ions. A biochemical analysis showed significant increases in glycine betaine, flavonoids and total phenolic compounds, highlighting the importance of osmotic regulation and antioxidant compounds in the salt tolerance of Linum maritimum. These findings have implications for the conservation of the species, especially under changing climatic conditions that may lead to increased soil salinity in its Mediterranean distribution area. Full article
Show Figures

Figure 1

14 pages, 4322 KiB  
Article
Negative Effects of Butachlor on the Growth and Physiology of Four Aquatic Plants
by Yixuan Huang, Suting Zhao, Ling Xian, Wei Li, Cunyu Zhou and Junyao Sun
Plants 2024, 13(2), 304; https://doi.org/10.3390/plants13020304 - 19 Jan 2024
Viewed by 950
Abstract
The increasing use of herbicides in intelligent agricultural production is driven by the time-consuming nature of manual weeding, as well as its ephemeral effectiveness. However, herbicides like butachlor degrade slowly and can be washed away by rainwater, ultimately flowing into the farm ponds [...] Read more.
The increasing use of herbicides in intelligent agricultural production is driven by the time-consuming nature of manual weeding, as well as its ephemeral effectiveness. However, herbicides like butachlor degrade slowly and can be washed away by rainwater, ultimately flowing into the farm ponds and posing risks to aquatic plants. To identify and recommend superior restoration strategies that effectively address the challenges posed by butachlor, we investigated the impacts of butachlor on the growth and physiology of four common aquatic plants (i.e., Hydrilla verticillata, Ceratophyllum demersum, Potamogeton maackianus, and Myriophyllum aquaticum) and their potential role in mitigating environmental damage by reducing residual herbicide levels. Our findings indicated that M. aquaticum was tolerant to butachlor, exhibiting higher growth rates than other species when exposed to various butachlor concentrations. However, the concentration of butachlor negatively impacted the growth of H. verticillata, C. demersum, and P. maackianus, with higher concentrations leading to more significant inhibitory effects. After a 15-day experimental period, aquatic plants reduced the butachlor residuals in culture mediums across concentrations of 0.5 mg/L, 1 mg/L, and 2 mg/L compared to non-plant controls. Our findings classified P. maackianus as butachlor-sensitive and M. aquaticum as butachlor-tolerant species. This investigation represents novel research aimed at elucidating the contrasting effects of different concentrations of butachlor on four common aquatic species in the agricultural multi-pond system. Full article
(This article belongs to the Special Issue Aquatic Plant Biology 2023)
Show Figures

Graphical abstract

15 pages, 1914 KiB  
Article
Triterpenoidal Saponins from the Leaves of Aster koraiensis Offer Inhibitory Activities against SARS-CoV-2
by Ji-Young Kim, Tai Young Kim, So-Ri Son, Suyeon Yellena Kim, Jaeyoung Kwon, Hak Cheol Kwon, C. Justin Lee and Dae Sik Jang
Plants 2024, 13(2), 303; https://doi.org/10.3390/plants13020303 - 19 Jan 2024
Viewed by 822
Abstract
Triterpenoidal saponins have been reported to be able to restrain SARS-CoV-2 infection. To isolate antiviral compounds against SARS-CoV-2 from the leaves of Aster koraiensis, we conducted multiple steps of column chromatography. We isolated six triperpenoidal saponins from A. koraiensis leaves, including [...] Read more.
Triterpenoidal saponins have been reported to be able to restrain SARS-CoV-2 infection. To isolate antiviral compounds against SARS-CoV-2 from the leaves of Aster koraiensis, we conducted multiple steps of column chromatography. We isolated six triperpenoidal saponins from A. koraiensis leaves, including three unreported saponins. Their chemical structures were determined using HR-MS and NMR data analyses. Subsequently, we tested the isolates to assess their ability to impede the entry of the SARS-CoV-2 pseudovirus (pSARS-CoV-2) into ACE2+ H1299 cells and found that five of the six isolates displayed antiviral activity with an IC50 value below 10 μM. Notably, one unreported saponin, astersaponin J (1), blocks pSARS-CoV-2 in ACE2+ and ACE2/TMPRSS2+ cells with similar IC50 values (2.92 and 2.96 μM, respectively), without any significant toxic effect. Furthermore, our cell-to-cell fusion and SARS-CoV-2 Spike-ACE2 binding assays revealed that astersaponin J inhibits membrane fusion, thereby blocking both entry pathways of SARS-CoV-2 while leaving the interaction between the SARS-CoV-2 Spike and ACE2 unaffected. Overall, this study expands the list of antiviral saponins by introducing previously undescribed triterpenoidal saponins isolated from the leaves of A. koraiensis, thereby corroborating the potency of triterpenoid saponins in impeding SARS-CoV-2 infection. Full article
Show Figures

Graphical abstract

19 pages, 3328 KiB  
Article
Effects of Foliar Selenium Application on Oxidative Damage and Photosynthetic Properties of Greenhouse Tomato under Drought Stress
by Jiawen Song, Lang Xin, Fukui Gao, Hao Liu and Xingpeng Wang
Plants 2024, 13(2), 302; https://doi.org/10.3390/plants13020302 - 19 Jan 2024
Cited by 1 | Viewed by 784
Abstract
Both drought stress and exogenous selenium (Se) cause changes in plant physiological characteristics, which are key factors affecting crop yield. Although Se is known to be drought-resistant for crops, its internal physiological regulatory mechanisms are not clear. This study analyzed the effects of [...] Read more.
Both drought stress and exogenous selenium (Se) cause changes in plant physiological characteristics, which are key factors affecting crop yield. Although Se is known to be drought-resistant for crops, its internal physiological regulatory mechanisms are not clear. This study analyzed the effects of selenium application (SeA) on antioxidant enzyme activities, osmoregulatory substance contents, and photosynthetic characteristics of greenhouse tomatoes under drought stress and related physiological mechanisms. The results showed that drought stress induced oxidative damage in cells and significantly increased the content of the membrane lipidation product malondialdehyde (MDA) and the osmoregulatory substance proline (p < 0.001) compared with the adequate water supply. The proline content of severe drought stress (W1) was 9.7 times higher than that of the adequate water supply (W3), and foliar SeA increased glutathione peroxidase (GSH-PX) activity, and SeA induced different enzymatic reactions in cells under different drought stresses; catalase (CAT) was induced under severe drought stress (p < 0.01) and was significantly increased by 32.1% compared with the clear water control, CAT. Peroxidase (POD) was induced under adequate water supply conditions (p < 0.01), which was significantly increased by 15.2%, and SeA attenuated cell membrane lipidation, which reduced MDA content by an average of 21.5% compared with the clear water control, and also promoted photosynthesis in the crop. Meanwhile, through the entropy weighting method analysis (TOPSIS) of the indexes, the highest comprehensive evaluation score was obtained for the S5W3, followed by the S2.5W3 treatment. Therefore, this study emphasized the importance of SeA to reduce oxidative damage and enhance photosynthesis under drought stress. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

12 pages, 835 KiB  
Article
Phytochemicals from Pterocarpus angolensis DC and Their Cytotoxic Activities against Breast Cancer Cells
by Zecarias W. Teclegeorgish, Ntebogeng S. Mokgalaka, Douglas Kemboi, Rui W. M. Krause, Xavier Siwe-Noundou, Getrude R. Nyemba, Candace Davison, Jo-Anne de la Mare and Vuyelwa J. Tembu
Plants 2024, 13(2), 301; https://doi.org/10.3390/plants13020301 - 19 Jan 2024
Viewed by 958
Abstract
Pterocarpus anglonesis DC is an indigenous medicinal plant belonging to the Pterocarpus genus of the Fabaceae family. It is used to treat stomach problems, headaches, mouth ulcers, malaria, blackwater fever, gonorrhea, ringworm, diarrhea, heavy menstruation, and breast milk stimulation. Column chromatography of the [...] Read more.
Pterocarpus anglonesis DC is an indigenous medicinal plant belonging to the Pterocarpus genus of the Fabaceae family. It is used to treat stomach problems, headaches, mouth ulcers, malaria, blackwater fever, gonorrhea, ringworm, diarrhea, heavy menstruation, and breast milk stimulation. Column chromatography of the stem bark extracts resulted in the isolation of eight compounds, which included friedelan-3-one (1), 3α-hydroxyfriedel-2-one (2), 3-hydroxyfriedel-3-en-2-one (3), lup-20(29)-en-3-ol (4), Stigmasta-5-22-dien-3-ol (5), 4-O-methylangolensis (6), (3β)-3-acetoxyolean-12-en-28-oic acid (7), and tetradecyl (E)-ferulate (8). The structures were established based on NMR, IR, and MS spectroscopic analyses. Triple-negative breast cancer (HCC70), hormone receptor-positive breast cancer (MCF-7), and non-cancerous mammary epithelial cell lines (MCF-12A) were used to test the compounds’ cytotoxicity. Overall, the compounds showed either no toxicity or very low toxicity to all three cell lines tested, except for the moderate toxicity displayed by lupeol (4) towards the non-cancerous MCF-12A cells, with an IC50 value of 36.60 μM. Compound (3β)-3-acetoxyolean-12-en-28-oic acid (7) was more toxic towards hormone-responsive (MCF-7) breast cancer cells than either triple-negative breast cancer (HCC70) or non-cancerous breast epithelial (MCF-12A) cells (IC50 values of 83.06 vs. 146.80 and 143.00 μM, respectively). Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants)
Show Figures

Graphical abstract

16 pages, 3609 KiB  
Article
Phenotypic and Genotypic Variation of Cultivated Panax quinquefolius
by Abdurraouf Abaya, Geovanna Cristina Zaro, Alvaro De la Mora Pena, Tom Hsiang and Paul H. Goodwin
Plants 2024, 13(2), 300; https://doi.org/10.3390/plants13020300 - 19 Jan 2024
Viewed by 1195
Abstract
American ginseng (Panax quinquefolius) is widely used due to its medicinal properties. Ontario is a major producer of cultivated American ginseng, where seeds were originally collected from the wild without any subsequent scientific selection, and thus the crop is potentially very diverse. [...] Read more.
American ginseng (Panax quinquefolius) is widely used due to its medicinal properties. Ontario is a major producer of cultivated American ginseng, where seeds were originally collected from the wild without any subsequent scientific selection, and thus the crop is potentially very diverse. A collection of 162 American ginseng plants was harvested from a small area in a commercial garden and phenotyped for morphological traits, such as root grade, stem length, and fresh and dry weights of roots, leaves, stems, and seeds. All of the traits showed a range of values, and correlations were observed between root and stem weights, root dry weight and leaf dry weight, as well as root and leaf fresh weights. The plants were also genotyped using single nucleotide polymorphisms (SNPs) at the PW16 locus. SNP analysis revealed 22 groups based on sequence relatedness with some groups showing no SNPs and others being more diverse. The SNP groups correlated with significant differences in some traits, such as stem length and leaf weight. This study provides insights into the genetic and phenotypic diversity of cultivated American ginseng grown under similar environmental conditions, and the relationship between different phenotypes, as well as genotype and phenotype, will aid in future selection programs to develop American ginseng cultivars with desirable agronomic traits. Full article
(This article belongs to the Special Issue Research Trends in Plant Phenotyping)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop