Skip to main content
Log in

Recyclable thermo-insulating panels made by reversible gelling of dispersed silica aerogel microparticles

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hydrophobic silica aerogel composite materials are considered as one of the most promising thermal insulation materials in energy-saving buildings. With the increasing negative effect on the environment of construction waste, it is necessary to develop an effectively recyclable thermal aerogel material for the building industry. In this work, we firstly employed a reversible gelling of hydrophobic silica aerogel microparticles dispersed with methyl cellulose surfactant (MCS) to prepare recyclable thermo-insulating panels (RTIP). The RTIP, with low bulk density (<0.05 g/m3) and thermal conductivity (0.027 W/(mK) at 20 °C), has a splintering mass loss of the composite material as low as 1% after 2 h continuous high-frequency oscillation, which was attributed to the rigid support of gelatinized MCS layers. Through mechanical mixing to re-dissolving in water, the reproducible RTIP can be obtained by the same gelling and drying process, with fairly stable hydrophobicity and thermal conductivity after 10 cycles. The strategy demonstrated here provides a new paradigm for developing environmentally-friendly materials for thermal-insulating buildings.

Graphical abstract

Highlights

  • A simple strategy was developed to prepare a highly uniform and stable hydrophobic silica aerogel aqueous solution.

  • Recyclable thermo-insulating panels exhibits high porosity, good mechanical strength, and low thermal conductivity (0.027 W/(mK) at 20 °C).

  • Recyclable thermo-insulating panels shows no obvious change in mechanical properties and thermal conductivity after five recyclable cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peter SC (2018) Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. Acs Energy Lett 3(7):1557–1561

    Article  CAS  Google Scholar 

  2. Minas C, Carpenter J, Freitag J, Landrou G, Tervoort E, Habert G, Studart AR (2019) Foaming of recyclable clays into energy-efficient low-cost thermal insulators. ACS Sustain. Chem. Eng 7(18):15597–15606

    Article  CAS  Google Scholar 

  3. Hasper W, Kirtschig T, Siddall M, Johnston D, Vallentin G, Harvie-Clark J (2020) Long-term performance of Passive House buildings. Energy Effic 14(1):1–17

  4. Ruparathna R, Hewage K, Sadiq R (2017) Rethinking investment planning and optimizing net zero emission buildings. Clean Technol. Environ. Policy 19(6):1711–1724

    Article  CAS  Google Scholar 

  5. Ramli Sulong NH, Mustapa SAS, Abdul Rashid MK (2019) Application of expanded polystyrene (EPS) in buildings and constructions: a review. J of Appl Polym Sci 136(20):47529

  6. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4265

    Article  CAS  Google Scholar 

  7. Reim M, Reichenauer G, Korner W, Manara J, Arduini-Schuster M, Korder S, Beck A, Fricke J (2004) Silica-aerogel granulate - Structural, optical and thermal properties. J Non-Cryst Solids 350:358–363

    Article  CAS  Google Scholar 

  8. Dorcheh AS, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Tech 199(1-3):10–26

    Article  Google Scholar 

  9. Zeng SQ, Hunt AJ, Cao W, Greif R (1994) Pore-size distribution and apparent gas thermal-conductivity of silica aerogel. J Heat Trans-T Asme 116(3):756–759

    Article  CAS  Google Scholar 

  10. Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:409310. Artn

    Article  Google Scholar 

  11. Berkefeld A, Heyer M, Milow B (2017) Silica aerogel paper honeycomb composites for thermal insulations. J. Sol-Gel Sci. Technol 84(3):486–495

    Article  CAS  Google Scholar 

  12. Chang KJ, Wang YZ, Peng KC, Tsai HS, Chen JR, Huang CT, Ho KS, Lien WF (2014) Preparation of silica aerogel/polyurethane composites for the application of thermal insulation. J Polym Res 21(1):1–9

  13. Ding JJ, Liu Q, Zhang B, Ye F, Gao Y (2020) Preparation and characterization of hollow glass microsphere ceramics and silica aerogel/hollow glass microsphere ceramics having low density and low thermal conductivity. J Alloy Compd 831:154737

  14. Eskandari N, Motahari S, Atoufi Z, Motlagh GH, Najafi M (2017) Thermal, mechanical, and acoustic properties of silica-aerogel/UPVC composites. J of Appl Polym Sci 134(14):44685

  15. Fricke J, Caps R, Buttner D, Heinemann U, Hummer E (1987) Silica aerogel - a light-transmitting thermal superinsulator. J Non-Cryst Solids 95(6):1167–1174

    Article  Google Scholar 

  16. Gunay AA, Kim H, Nagarajan N, Lopez M, Kantharaj R, Alsaati A, Marconnet A, Lenert A, Miljkovic N (2018) Optically transparent thermally insulating silica aerogels for solar thermal insulation. ACS Appl Mater Interfaces 10(15):12603–12611

    Article  CAS  Google Scholar 

  17. Parmenter KE, Milstein F (1998) Mechanical properties of silica aerogels. J Non-Cryst Solids 223(3):179–189

    Article  CAS  Google Scholar 

  18. Li GA, Zhu TL, Ye LY, Deng ZX, Zhang YJ, Jiao F, Zheng HR (2009) Hydrophobic silica aerogel prepared in-situ by ambient pressure drying and its thermal stability. Acta Phys-Chim Sin 25(9):1811–1815

    Article  Google Scholar 

  19. Shafi S, Zhao Y (2019) Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation. J. Porous Mater 27(2):495–502

    Article  Google Scholar 

  20. Ul Haq E, Zaidi SFA, Zubair M, Karim MRA, Padmanabhan SK, Licciulli A (2017) Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor. Energ Buildings 151:494–500

    Article  Google Scholar 

  21. Ge DT, Yang LL, Li Y, Zhao JP (2009) Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite. J Non-Cryst Solids 355(52-54):2610–2615

    Article  CAS  Google Scholar 

  22. Kim HM, Noh YJ, Yu J, Kim SY, Youn JR (2015) Silica aerogel/polyvinyl alcohol (PVA) insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution. Compos Part a-Appl S 75:39–45

    Article  CAS  Google Scholar 

  23. Zhang ZH, Shen J, Ni XY, Wu GM, Zhou B, Yang MX, Gu XH, Qian MJ, Wu YH (2006) Hydrophobic silica aerogels strengthened with nonwoven fibers. J Macromol Sci A 43(11):1663–1670

    Article  CAS  Google Scholar 

  24. Madyan OA, Fan MZ (2018) Hydrophobic clay aerogel composites through the implantation of environmentally friendly water-repellent agents. Macromolecules 51(24):10113–10120

    Article  CAS  Google Scholar 

  25. Mohammadi A, Moghaddas J (2015) Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites. Chem Eng Res Des 94:475–484

    Article  CAS  Google Scholar 

  26. Liu RY, Wang J, Du Y, Liao JH, Zhang XT (2019) Phase-separation induced synthesis of superhydrophobic silica aerogel powders and granules. J Solid State Chem 279:120971

  27. Wang J, Zhang YL, Wei Y, Zhang XT (2015) Fast and one-pot synthesis of silica aerogels via a quasi-solvent-exchange-free ambient pressure drying process. Micropor Mesopor Mat 218:192–198

    Article  CAS  Google Scholar 

  28. Wang J, Zhang YL, Zhang XT (2016) Reversible superhydrophobic coatings on lifeless and biotic surfaces via dry-painting of aerogel microparticles. J Mater Chem A 4(29):11408–11415

    Article  CAS  Google Scholar 

  29. Xian AP (2000) Thermodynamic discussion on Young’s equation in wetting. Z Metallkd 91(4):316–322

    CAS  Google Scholar 

  30. Yamaguchi Y, Kusudo H, Surblys D, Omori T, Kikugawa G (2019) Interpretation of Young’s equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid. J Chem Phys 150(4):044701

  31. Wei PL, Hou K, Chen T, Chen GY, Mugaanire IT, Zhu MF (2020) Reactive spinning to achieve nanocomposite gel fibers: from monomer to fiber dynamically with enhanced anisotropy. Mater Horiz 7(3):811–819

    Article  CAS  Google Scholar 

  32. Kundu PP, Kundu M, Sinha M, Choe S, Chattopadhayay D (2003) Effect of alcoholic, glycolic, and polyester resin additives on the gelation of dilute solution (1%) of methylcellulose. Carbohydr. Polym 51(1):57–61

    Article  CAS  Google Scholar 

  33. Zhuo L, Ma C, Xie F, Chen S, Lu Z (2020) Methylcellulose strengthened polyimide aerogels with excellent oil/water separation performance. Cellulose 27(13):7677–7689

    Article  CAS  Google Scholar 

  34. Jung HNR, Lee YK, Parale VG, Cho HH, Mahadik DB, Park HH (2017) Hydrophobic silica composite aerogels using poly(methyl methacrylate) by rapid supercritical extraction process. J. Sol-Gel Sci. Technol 83(3):692–697

    Article  CAS  Google Scholar 

  35. He S, Huang YJ, Chen GN, Feng MM, Dai HM, Yuan BH, Chen XF (2019) Effect of heat treatment on hydrophobic silica aerogel. J Hazard Mater 362:294–302

    Article  CAS  Google Scholar 

  36. Al Zaidi IK, Demirel B, Atis CD, Akkurt F (2020) Investigation of mechanical and thermal properties of nano SiO2/hydrophobic silica aerogel co-doped concrete with thermal insulation properties. Struct. Concr 21(3):1123–1133

    Article  Google Scholar 

  37. Li H, Xie ZL, Liu LL, Peng ZR, Ding QS, Ren LL, Ai D, Reainthippayasakul W, Huang YQ, Wang Q (2019) High-Performance Insulation Materials from Poly(ether imide)/Boron Nitride Nanosheets with Enhanced DC Breakdown Strength and Thermal Stability. Ieee T Dielect El In 26(3):730–737

    Article  Google Scholar 

  38. Wong JCH, Kaymak H, Tingaut P, Brunner S, Koebel MM (2015) Mechanical and thermal properties of nanofibrillated cellulose reinforced silica aerogel composites. Micropor Mesopor Mat 217:150–158

    Article  CAS  Google Scholar 

  39. Li Z, Gong LL, Cheng XD, He S, Li CC, Zhang HP (2016) Flexible silica aerogel composites strengthened with aramid fibers and their thermal behavior. Mater Design 99:349–355

    Article  CAS  Google Scholar 

  40. Maleki H, Duraes L, Portugal A (2014) Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Micropor Mesopor Mat 197:116–129

    Article  CAS  Google Scholar 

  41. Binici H, Eken M, Kara M, Dolaz M (2014) An environment-friendly thermal insulation material from sunflower stalk, textile waste and stubble fibers. Constr Build Mater 51:24–33

    Article  Google Scholar 

  42. Abu-Jdayil B, Mourad AH, Hittini W, Hassan M, Hameedi S (2019) Traditional, state-of-the-art and renewable thermal building insulation materials: an overview. Constr Build Mater 214:709–735

    Article  Google Scholar 

  43. Cekon M, Struhala K, Slavik R (2017) Cardboard-based packaging materials as renewable thermal insulation of buildings: thermal and life-cycle performance. J Renew Mater 5:84–93

    Article  Google Scholar 

  44. Jiri Z, Jitka H, Petranek V, Kosikova J, Korjenic A (2011) Investigation of thermal insulation materials based on easy renewable row materials from agriculture. advanced materials and structures. Pts 1 and 2 335-336:1412–1417

    CAS  Google Scholar 

  45. Rabold A, Hessinger J, Bacher S (2015) Thermal insulation composite system and outer insulations from renewable raw materials in the renovation of old buildings sound engineering design of exterior components in the rehabilitation. Bauphysik 37(1):57–61

    Article  Google Scholar 

  46. Viel M, Collet F, Lanos C (2019) Development and characterization of thermal insulation materials from renewable resources. Constr Build Mater 214:685–697

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the National Key Research and Development Program of China (2016YFA0203301, 2020YFB1505703), the National Natural Science Foundation of China (52173052), and the Royal Society Newton Advanced Fellowship (NA170184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuetong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Li, T., Wang, Z. et al. Recyclable thermo-insulating panels made by reversible gelling of dispersed silica aerogel microparticles. J Sol-Gel Sci Technol 106, 432–443 (2023). https://doi.org/10.1007/s10971-022-05741-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05741-z

Keywords

Navigation